23. Leibniz Conference 2018 Localization Technology for IoT, Telematics and Industry 4.0

November 22-23rd 2018, Lichtenwalde (Germany)

Session: Radio sensor based positioning Chair: Dr. D. Eggert

LEIBNIZ-INSTITUT für interdisziplinäre Studien e.V. (LIFIS)

M2M World of Connected Services

M metirionic

IoT – Business Potentials

Source: **Capitalizing on the Internet of Things - How to succeed in a connected world**, http://www.bosch-si.com/lp/iot-white-paper.html?ref=ig-global-2014H1-iot-strategy-whitepaper

M metirionic

Distance Measurement in Wireless Networks

LEINS NUT III

"With 30 billion connected devices and almost 1000 trillion installed sensors in 2020 the question about **where** a measurement has been taken becomes as important as **what** has been measured." (2014)

Wireless Sensor Network:

- Distributed autonomous sensors monitor physical and environmental conditions
- Wireless network is used to concentrated sensor data in a central processing unit
- Cloud based data storage enables monitoring and control throughout the world
- Remote access to sensor data through
 mobile device or terminal

∧ metirionic

Time Domain vs. Frequency Domain

Hybrid Solutions may combine the benefits of the two approaches

M metirionic

From Distance and Angle over Positioning to Tracking

Ad-hoc Distance/AoA Measurement

Intelligent Reference Nodes within a Basic Network

- Proximity/Position(r,α,θ) is computed in Intelligent Reference Nodes directly from radio measurements
- © Enables Faster/Direct Control Response (derived immediately inside reference node)

Quality of Position relies on measurements from single reference node

Infrastructure-Based Location Services Basic Reference Nodes within an Intelligent Network

- Distance (d₁,..,d_n) derived from radio measurements while location is computed at central Server
- Requires extra transport to central server; application response needs to be propagated through network
- Higher accuracy by combining measurement data from multiple reference nodes
- Support Proximity, Position and Tracking
- Low Cost Tag Nodes
- Hybrid Solutions may combine the benefits of the two approaches

Angle of Arrival

	Synchronized TRX	Time Sequential
Calibration	Online (requ. Calib branch in AFE; shared SPI, (follow WPAN module design))	None required (Antenna Diversity RF Frontend)
Acquisition Speed	90ms (83 Frequencies)	250ms (83 Frequencies)
Accuracy	< 15 °	<15 °
Outlook	MIMO Approach: Combination of Angle and Distance Measurements	

2D – Eigenvalue Analysis: 1x LOS Path 11m + Indirect Path:

Reflection at a wall (Separation 6m)

∧ metirionic

-30

Passive vs Active Reflector

Passive Reflector

- Objects of Interest NOT actively engaged on radio traffic and corresponding measurement process
- Context Recognition as simplest form of radio imaging
- No extra HW and energy reservoir required for Objects of Interest
- Evaluation of changes in propagation characteristics primarily the indirect propagation paths; Usually lower SNR and further obstruction by high energy in direct path

Active Reflector

- Objects of Interest are actively engaged in radio traffic and corresponding measurement process
- Active RFID Application
- Requires extra HW and energy reservoir for Objects of Interest
- Usually higher SNR due to evaluation of direct propagation paths

Λ

Distance between the poles

∧ metirionic

From Proximity over Movement to Radar Imaging

Monitored area is divided into a grid

The presence and movement of people can be detected

WE KNOW THE DISTANCE !

Dr. Dietmar Eggert

Metirionic GmbH Strehlener Straße 12 -14 01069 Dresden, Germany

+49 351 873 229 - 11

dietmar.eggert@metirionic.com

WIRELESS DISTANCE MEASUREMENT