

Institute of Systems Optimization (ITE)

Pedestrian Navigation in Indoor Environments Based on Foot-Mounted Sensors

Nikolai Kronenwett and Gert F. Trommer

KIT - The Research University in the Helmholtz Association

www.ite.kit.edu

Main Research ITE

Systems

Micro Aerial Vehicle

- Fusion of IMU, Cameras, Laserscanner and GNSS
- Focus on GNSS-denied envinroments
- Navigation and exploration indoors
- Collision avoidance
- Map generation
- Semantic segmentation

Pedestrian Navigation

Introduction

Wide field of applications:

- Task force members
- Security & rescue personnel
- Visually impaired people
- Private users

Challenges:

- Independence of pre-installed infrastructure
- Outdoor-Indoor transitions
- Accurate localization
- Restrictions in weight, cost and size

Outline

Introduction

Hardware Configuration

Model Based Navigation and Experimental Results

Conclusion & Outlook

5

IT

Hardware Configuration

Foot Module

- MEMS MPU-9250
- Air Pressure Sensor BMP 280
- **NEO M8T GNSS Receiver**
- MEMS Adis16448 Connector
- Bluetooth antenna
- Microprocessor STM32

Bluetooth

Processing Unit / User Interface

Lenovo X1 Yoga

Air Pressure Sensor

- Intel i7-7500U (2.7GHz)
- 16GB DDR3-RAM

Outline

Introduction

Hardware Configuration

Model Based Navigation and Experimental Results

Conclusion & Outlook

Zero Velocity Update (ZUPT)

Challenges of MEMS sensors for INS:

• Accumulation of biased ACC+GYRO values \rightarrow increasing drift

Solutions:

- Additional aiding sensors (Laser, camera,...) \rightarrow increasing cost, weight and size
- Physical or model-based knowledge

Zero Velocity Update (ZUPT):

- σ^2 based technique \rightarrow imprecise
- New: model-based technique \rightarrow high-precision

Finite State Machine (FSM) - Idea

Goal: Robust and accurate detection of the Midstance phase

Finite State Machine (FSM) - Step Detection

Finite State Machine (FSM) - Step Detection

Experimental Results

- Absolute position and attitude estimation with GNSS signals
- Tightly Coupled GNSS/INS Integration
- Indoor/Outdoor transitions possible
- Time delay correction between GNSS and IMU data
- GPS support (GLONASS in future)
- Detection and exclusion of GNSS satellites with multipath errors

Check Elevation

• $\phi > \delta_{\phi}$

 Satellites with low elevation angles have a high probability of multipath errors especially in urban environments

Check SNR

• $SNR > \delta_{SNR}$

Reduction of the signal power by reflection, deflection or scattering

Mahalanobis Distance

•
$$m < \delta_{mahal}$$
 $m = \sqrt{\frac{r^2}{\sigma_S^2}}$ $r = H\hat{\vec{x}} - \tilde{y}$ $\sigma_S^2 = HPH^T + \sigma_R^2$

- Adaptive outlier detection depending on P
- Check if there is a big gap between predicted and received measurement respect to their covariances

Experimental Results

- ADIS 16448 IMU
- GPS only with 10Hz

ZUPT not always indoors

 \rightarrow Robust and exact detection of moving platforms

Source of [1]: https://ozoneelevators.co.in/images/backgrounds/bg-main-2.jpg Source of [2]: https://upload.wikimedia.org/wikipedia/commons/thumb/4/42/Copenhag en_Metro_escalators.jpg/1920px-Copenhagen_Metro_escalators.jpg

Institute of Systems Optimization (ITE)

Experimental Results

	vert. distance	hor. distance	Δh	Δ2D	Δ3D
Test 1	105.23m	240.00m	0.33m	0.40m	0.52m
Test 2	63.52m	140.07m	0.89m	0.57m	1.05m
Test 3	124.03m	153.79m	0.98m	0.62m	1.16m

$$v_{hor} = \sqrt{v_{north}^2 + v_{east}^2}$$

Experimental Results

Without constraints

With constraints

	vert. distance	hor. distance	Δh	Δ2D	Δ3D
Test 1	28.95m	111.53m	0.49m	0.82m	0.97m
Test 2	36.90m	168.37m	0.06m	2.38m	2.38m
Test 3	25.99m	123.34m	0.11m	0.57m	0.58m
Test 4	20.46m	324.99m	0.05m	1.37m	1.37m

With constraints and steps on the escalator

Outline

Introduction

Hardware Configuration

Model Based Navigation and Experimental Results

Conclusion & Outlook

Conclusion & Outlook

Conclusion

- High accurate relative positioning system
- Tightly integration of GNSS/IMU data for absolute localization
- Detection of elevators and escalators
- Real-time localization in outdoor and indoor scenarios

Outlook

- Mounting electronics in heel
- Body camera with RGBD sensor for reconstruction of 3D map

Conclusion & Outlook

current grayscale-frame with detected features (red)

 $\underbrace{\mathbb{E}}_{N}^{2} \xrightarrow{1}_{-3}^{-2} \xrightarrow{1}_{-1}^{-1} 0 \xrightarrow{1}_{-$

X(m)

Realsense D435(IMU Integration)

Institute of Systems Optimization (ITE)

Thank you!

Contact information: nikolai.kronenwett@kit.edu http://www.ite.kit.edu