

Wireless ranging/localization and its applications in lighting IoT

Xiangyu Wang, Signify Research, 22 Nov 2018

Outline

- Lighting grid and IoT localization applications
- Automatic localization of lighting grids
- Phase measurements, ranging and distance data processing
- Graph matching and validations
- Conclusions and future work

Lighting grid and IoT localization applications

Lighting grid is ideal for IoT localization

Wireless lighting infrastructure

Lights are everywhere

Lights are dense

Lights are fixed and powered

Commissioning already done for lighting control No or low extra HW cost
Ubiquitous coverage
Better accuracy and reliability
Less maintenance
Easy to setup

(s)ignify

Automatic localization of lighting grids

7 Xiangyu Wang, Signify Research, Leibniz Conference 2018 – Localisation Technology for IoT, Telematics and Industry 4.0

Automatic localization of lighting grid

Automatic localization of lighting grid

Xiangyu Wang, Signify Research, Leibniz Conference 2018 – Localisation Technology for IoT, Telematics and Industry 4.0 9

(s) ignify

Solution workflow

Phase measurement, ranging and distance data processing

Ranging / Distance measurement principle

(b) Repeating individual frequency measurement

Source: Atmel / Metirionic

(s)ignify

Atmel AT86RF233 evaluation kit

Experimental setup

Inter-node distance: 1m in both X and Y directions

Illustration of distance data processing

Comparison of various filtering and averaging strategies

Comparison of various filtering and averaging strategies

Graph adjacency matrix

Evaluation of adjacency matrix

Graph matching and validations

Graph matching overview

Method 1: Graph drawing and vertex matching

• objective function: $\sum_{i,j\in N} d_{est(i),act(j)}$

Method 2: Iterative vertex matching based on distances

• objective function: $\sum_{i,j \in N} (d_{est(i),est(j)} - d_{act(i),act(j)})^2$

Method 3: Heuristic edge matching

• Objective function: $\sum_{i,j\in N} estAdjMatrix_{i,j} * actAdjMatrix_{i,j}$

Comparison of the three graph matching methods

21

Accuracy of three methods

(s)ignify

Experimental setup 2

Inter-node distance: 1.7m in both X and Y directions

Comparison of the three graph matching methods

23

Accuracy of three methods

(s)ignity

Conclusions and future work

Conclusions and future work

- Phase measurement / ranging pioneered by Atmel/Metirionic is a low cost and accurate solution for IoT localization
- Lighting grid offers many advantages for deploying IoT localization applications
- For automatic localization of lighting grid, measurement data processing is one of the key aspects
- Graph matching method, particularly the heuristic edge matching method, appears to be promising
- The validations so far are for a small and regular lighting grid (3 by 4). Larger test setup and irregular lighting grids are to be studied.

Acknowledgement

 Former Master's student, GONG Li, previously at Eindhoven University of Technology

Signify