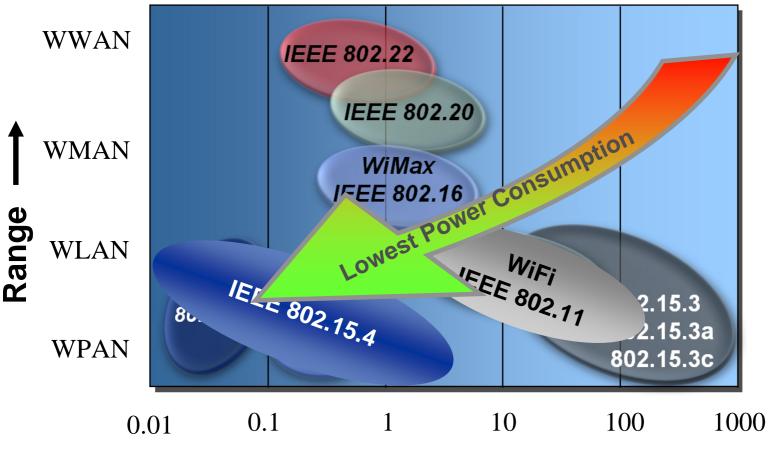
Funknetzwerke mit niedrigen Datenraten Aspekte von H/W Lösungen für heute und morgen

ATMEL – Microcontroller Wireless Solutions Klaus Meyer, Dietmar Eggert - Dresden

> 7th LEIBNIZ CONFERENCE OF ADVANCED SCIENCE - SENSORSYSTEME, Oct. 2008, Lichtenwalde -


Content

Presentation Overview

- 1. Introductory Overview
- 2. System Characteristics (Selection)
 - Coexistence
 - RF Performance
 - Power Consumption
- 3. System Characteristics Appl. Example
- 4. Summary

The IEEE802 wireless space

Data Rate (Mbps)

System Characteristics

Characteristics of Low Data Rate Wireless Network Nodes

- RF and system performance
 - TX power & Receiver sensitivity (Path loss)
 - Ranging
- Power consumption
- System cost
 - External components
- Flexibility of system solution
 - Diff. uC
 - One chip vs dual chip solution
 - Protocol stacks
 - Applications
- Increasing requirements on Coexistence
- Interoperability

Content

Presentation Overview

- 1. Introductory Overview
- 2. System Characteristics (Selection)
 - Coexistence
 - **RF Performance**
 - Power Consumption
- 3. System Characteristics Appl. Example
- 4. Summary

Coexistence w/ other w/I Systems

Coexistence Subject using IEEE 802.15.4 as example (1)

- 1. CCA (clear channel assessment) using CS (carrier sense) and ED (energy detect)
 - Collision avoidance mechanism (carrier sense multiple access with collision avoidance, CSMA-CA), applied to 2.4G and sub-1 GHz
 - ED and LQI (link quality indicator) are measurements used for CSMA-CA to characterize interference situations

2. Dynamic Channel Selection

- Not required for 868 MHz
- Mandatory for 2.4 GHz requires resources and time, increase power consumption
 - ChannelList parameters are to be adapted for varying interference scenarios
- (Adaptive) Frequency Hopping is about getting standardized to an larger extent

3. Modulations schemes

- 2.4 GHz O-QPSK (sine shaped, MSK equivalent) allows a power-efficient modulation scheme
- Sub-1 GHz bands using bandwidth limited modulation schemes
- 868 MHz is not affected by adjacent/alternate channel interferences
- 915 MHz has typically a higher selectivity due to narrowband characteristic

Coexistence Subject using IEEE 802.15.4 as example (2)

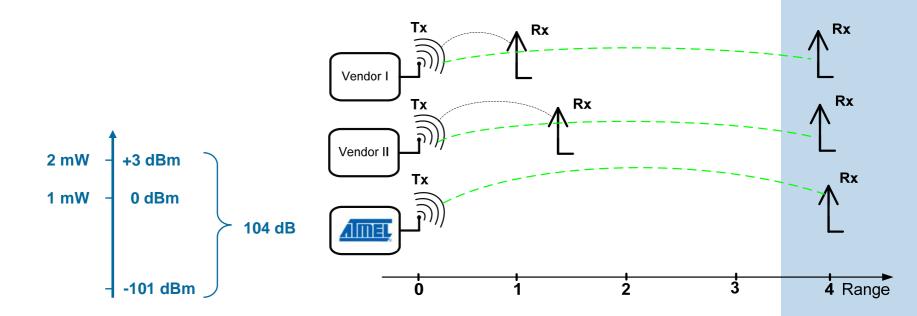
- 5. Low duty cycle
 - IEEE802.15.4 specification is tailored for application with low power and low data rate
 - Typical applications are anticipated to run with low duty cycle as well
 - A low duty cycle reduces the risk of interferences
 - Battery operated devices suffer from increasing duty cycle

4. Channel alignment

- <u>Not</u> required for 868 MHz
- Mandatory for 2.4 GHz requires resources and time, increase power consumption
- 2.4 GHz channel alignment reduces the number of available channels significantly
 - 4 out of 16 channels in guard bands between 802.11b
 - Interferences in guard bands are likely due 802.11 TX side lobes

6. Low transmit power

- Applicable to all 802.15.4 bands
- Sub-1 GHz systems are likely to operate at lower power because of
 - Better propagation conditions, and
 - Less interferences

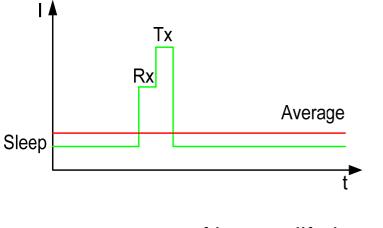


Evolution of RF Performance

e.g. Atmel AT86RF230:

- Linkbudget 104dB
- RX Sensitivity -101dBm
- TX Power +3dBm

	Тх	Rx	Link
TRX1 [*]	0dBm	-92dBm	92dB
TRX2 [*]	+2.5dBm	-100dBm	102.5dB
TRX3 [*]	0dBm	-95dBm	95dB
TRX4 [*]	+5dBm	-98dBm	103dB
Atmel RF230 [*]	+3dBm	-101dBm	104dB


(*) TRX parameter from datasheets available on web

Evolution of Power Consumption

e.g. Atmel AT86RF231:

- Sleep 20 nA
- Receive ~13 mA
- Transmit ~14 mA

	Тх	Rx	Sleep
TRX3 [*]	17mA	19mA	20µA
TRX4 [*]	33mA	22mA	1μΑ
TRX1 [*]	30mA	37mA	1 µA
Atmel RF230 [*]	16mA	15 mA	0.02 µA
Atmel RF231 [*]	14 mA	13 mA	0.02 µA

= years of battery lifetime

Example:

Temp Sensor Application

AT86RF230 + ATmega1284P

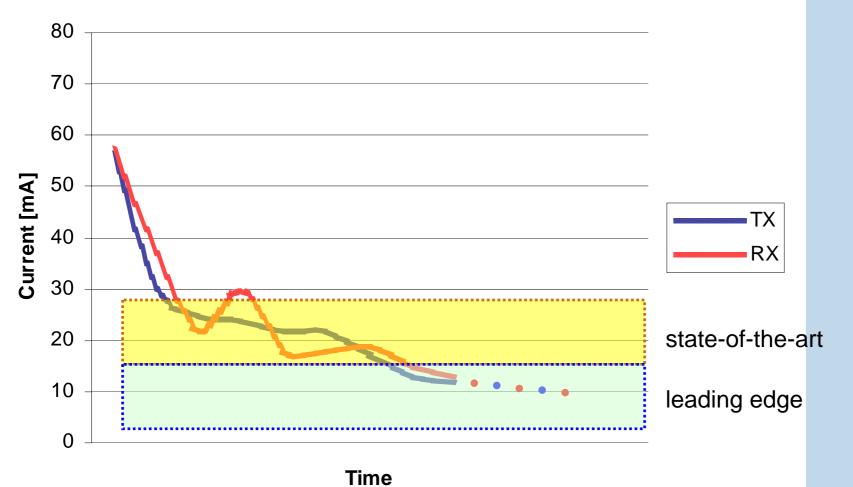
Battery: AA Li-Thionyl-Cl

Sleep : < 600 nA w/RTC

Active: ~ 20 mA

Temp every 30 Sec

Lifetime > 8 years


	RF Pe	RF Performance		Power Consumption				
Device	Tx O/P	Rx Sens	Sleep	Inactive	Tx (0dBm)	Tx (Full)	Rx	
Atmel AT86RF230 [°]	+3dBm	-101dBm	0.02uA	1.7mA	<13mA	16mA	15mA	
Atmel AT86RF231 [.]	+3dBm	-101dBm	0.02uA	0.4mA	<12mA	14mA	13mA	
TRX1 [.]	0dBm	-92dBm	1uA	0.5mA	30mA	30mA	37mA	
TRX3 [,]	0dBm	-95dBm	20uA	426uA	17.4mA	17.4mA	18.8mA	
TRX4 [.]	+5dBm	-98dBm	<1uA		25.8mA	33.6mA	22.2mA	
TRX5 [.]	0dBm	-92dBm	<0.5uA		27mA	27mA	27mA	
TRX6 [.]	0dBm	-95dBm	2uA	?	22mA	22mA	18mA	
TRX7 [.]	0dBm	-95dBm	2uA	7.6mA	22mA	22mA	18mA	
TRX8 [.]	0dBm	-90dBm	2uA	9mA	56mA	56mA	57mA	
TRX2 [·] (SC)	+4.5dBm	-100dBm	<1uA	?	24mA	34mA	30mA	

Colour coded by Linkbudget : < 95dB, 95dB-100dB, >100dB

(*) TRX parameter from datasheets available on web

TX/RX current over the past few years

TX current @ 0dBm TXPWR

Content

Presentation Overview

- 1. Introductory Overview
- 2. System Characteristics (Selection)
 - Coexistence
 - RF Performance
 - Power Consumption

3. System Characteristics – Appl. Example

4. Summary

System Characteristics – Appl. Example

RF4CE (Radio Frequency for Consumer Electronics)

- industry consortium to a RF remote control standard available for audio video consumer electronics
- the RF4CE standard is based on the 2.4GHz PHY/MAC IEEE 802.15.4 standard
- the RF4CE networking layer will be thin, flexible and future-proof
- Goals:

. . .

- ensures interoperability between remote controls and audio/visual (A/V) devices
- achieving longer battery life with RF remote controls
- coexistence with other radio systems
- is intended to work within a large room with many obstacles in its direct path (extended range)

Performance calculations are based on 4 typical RF4CE application scenarios:

a. Energy Consumption

#1 Button press paging#2 Paging poll

wake up – transactions – sleep wake-up – listen – sleep

b. 24h Average Current Consumption (24 h)

#3 Button press paging	50 button press and paging poll every 5 sec / 24 h
#4 Button press only	50 button press / 24 h

- Scenarios #1, #2 illustrating transaction power consumption
- Scenarios #3, #4 are determined by current drawn during sleep

AT86RF231 uses Basic Operation Mode

RF4CE Scenario ¹	AT86RF231+uC ²	TI CC2430	Unit	Comments
#1	41.2	86.7	mAms	Button press power consumption
#2	18.8	32.4	mAms	Paging poll power consumption
#3	4.05	7.03	μΑ	With Paging: Average over 24 hrs
#4	0.29	0.55	μΑ	Without Paging: Average over 24 hrs

Notes

¹ Detailed description of the scenarios are in a separate documentation http://www.embedded.com/columns/technicalinsights/209903894

² Figures adapted to be compatible w.r.t. the link budget

AT86RF231 uses Extended Operation Mode

RF4CE Scenario ¹	AT86RF231+uC ²	TI CC2430	Unit	Comments
#1	24.3	86.7	mAms	Button press power consumption
#2	18.4	32.4	mAms	Paging poll power consumption
#3	3.95	7.03	μΑ	With Paging: Average over 24 hrs
#4	0.28	0.55	μΑ	Without Paging: Average over 24 hrs

Notes

¹ Detailed description of the scenarios are in a separate documentation http://www.embedded.com/columns/technicalinsights/209903894

² Figures adapted to be compatible w.r.t. the link budget

- Performance improvements are significant if devices are used which offer a better power consumption performance (cf. slide 9 & 10):
 - Up to 72 % <u>reduction</u> in energy consumption
 - Up to 49 % reduction in average current consumption
- This is based on
 - lower power consumption figures
 - faster state transitions and faster PLL
 - protocol acceleration techniques

Summary

- Low data rate IEEE802.15.4 RF technology is ready for wireless sensor networks
- High link budget, low power consumption, flexible system architecture allow to fit a huge variety of system solution for low data rate applications
- There are several ways to overcome radio interference within the frequency bands used for radio communication
- Different requirements of transmission of user information and signalisation traffic will have an impact on the design of the related radio systems

Thank you very much!

