

Structural Health Monitoring an Großanlagen unter Anwendung von Multisensorsystemen und fraktalbasierten Auswerteverfahren

Jürgen Schreiber

Fraunhofer Institut für Zerstörungsfreie Prüfverfahren Institutsteil Dresden

Fraunhofer Institut Zerstörungsfreie Prüfverfahren Sensorsysteme 2008 Lichtenwalde, 16-18. Oktober 2008

Fraunhofer

Challenge: Characterisation of the material damage state without baseline

Save and economic service of safety relevant industrial components

Reliable evaluation of the fatigue damage , forecasting of the residual life time

Maximal usage of the whole service life time, definition of actions

Search for suitable NDT-methods either for regular inspection or

Structural Health Monitoring

Fraunhofer _{Institut} Zerstörungsfreie Prüfverfahren

Fraunhofer _{Institut} Zerstörungsfreie Prüfverfahren

Components of brown coal open cast mining

System of strain gauges are displaced to control load and to assess the service strength

Vattenfall Europe Cottbus

Aging

Materials damage $\leftarrow \rightarrow$ Residual service life time ?

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Fraunhofer _{Institut} Zerstörungsfreie Prüfverfahren

Integrity of Railway Structures

<u>s</u> t <u>r</u> <u>a</u> n g <u>a</u> Tests with mobile eddy current sensor system for crack inspection <u>e</u> Rolling Contact Fatigue $\leftarrow \rightarrow$ Repairing in time before cracking

Fraunhofer _{Institut} Zerstörungsfreie Prüfverfahren Sensorsysteme 2008 Lichtenwalde, 16-18. Oktober 2008

Wiener Linien

Available NDT-methods

- Micro-thermography: Crack indicator, but too week signals from ٠
 - deformation structure
- US-backscattering: Multiple scattering and long propagation path ٠ strongly mask the effect of deformation mesostructures, while cracks are seen well.
- Acoustic emission: Low effect of plastic deformation, signals only due to ٠ force changes
 - Weak sensitivity for deformation, only crack indication
- Optical methods: Dirty surface prevent simple application
- Eddy current:
- Barkhausen noise:

Potential sensor:

- Good for crack indication, but deformation? Testing locally, simple and continuous noise excitation, magnetic parameters sensitive to stress
- and microstructure.

What can we learn from standard Barkhausen noise measurements?

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

State of the art in NDT

Barkhausen noise parameter versus fatigue

stress controlled (R=0; f=3 Hz, stop at necking)

a) N=0-1000, σ_a =240MPa b) N=1000-2000, σ_a =260MPa c) N=2000-6000, σ_a =260MPa c) N=6000-6229, σ_a =300MPa

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

State of the art in NDT

Fraunhofer _{Institut} Zerstörungsfreie Prüfverfahren

New developments in NDT for SHM

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

New developments in NDT for SHM

Concept of 16-element eddy current line array developed at IZFP-Dresden.

Schematic of 64-element twodimensional eddy current array planned as foil sensor system

Array sensor system to detect Structural varying eddy current ("Grain noise")

Fraunhofer _{Institut} Zerstörungsfreie Prüfverfahren

New developments in NDT for SHM

Fraunhofer _{Institut} Zerstörungsfreie Prüfverfahren

It is possible now to measure very much, however, what is the key information for the assessment of materials damage?

Micro

TEM-Image

Albert Einstein (1879 - 1955)

Meso

Eine wirklich gute Idee erkennt man daran, dass ihre Verwirklichung von vorneherein ausgeschlossen erscheint.

IZFP

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Theoretical und experimental basis

Mesomechanics (Panin since 82) Plastic deformation: Gliding locally due to stress concentrators accompanied by rotation of neighbouring grains \rightarrow formation of closed structures (new structure elements) \rightarrow hierarchical structure • Dislocation pattern (Micro) • Slip band formation (Meso I) • Folded multi-bands (Meso II) Suggestion: Scaling behaviour of micro-mesostructure may characterise fatigue, fractal dimension D_F as a Depinning Models (self-organising criticality" 90ies) (avalanches, sand pile, domain motion) Distribution of jump heights, duration and energy as well as the power spectrum for Barkhausen noise in amorphous magnets:

 $D(s) \sim s^{\alpha}$, $P(k) \sim k^{-\beta} \rightarrow scaling behaviour$

Symmetry arguments point at 3 universal classes:

- $\alpha \ 1 \approx 1.70 \Rightarrow 3D$ domains , dipole-dipole-interaction
- $\alpha 2 \approx 1.44 \Rightarrow 2D$ domains in local fields
- α 3 \approx 1.30 \Rightarrow 2D multi-domains in local fields

However, continuous transformation between the structures are obtained experimentally. There are similarities between deformation and magnetic structures!

Scaling behaviour

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

measure of damage?

Scaling behaviour?

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Fraunhofer _{Institut} Zerstörungsfreie Prüfverfahren

Topography and micro-magnetic structures

15 NiCuMoNb 5

Fatigue experiment

 ϵ_a = 0.7 %, d ϵ /dt = 3 %/min

Mesostructures

 $D_{\rm F} = 2.50$

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Magnetic Barkhausen noise

Integral parameters

- 1. Integrated Amplitude
- 2. RMS-value
- 3. Asymmetry (Moments)

Time series

- 1. Distribution of chumps
- 2. Powerspectrum
- 3. Correlation function

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Fractal analysis of Barkhausen noise

IZFP Fraunhofer

Zerstörungsfreie Prüfverfahren

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Fraunhofer _{Institut} Zerstörungsfreie Prüfverfahren

Brown coal open cast mining

Support of the 600 m long bridge F60

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

IZFP

Fraunhofer _{Institut} Zerstörungsfreie Prüfverfahren

First results for "Wiener Linien" rails

Y ~ roling direction

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

RMS ~ Residual stress

Perpendicular direction

Roling direction

Fraunhofer _{Institut} Zerstörungsfreie Prüfverfahren

D_F ~ Fatigue damage

1.15

1.10

2

3

Measuring Position

5

4

6

Perpendicular direction

Fraunhofer _{Institut} Zerstörungsfreie Prüfverfahren

Sensorsysteme 2008 Lichtenwalde, 16-18. Oktober 2008 new

Further applications

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Further applications

Fractal dimension of Barkhausen noise

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Outlook

DMS \rightarrow Load collectives +Wöhler-curve $\rightarrow N_{B,} \alpha(\Delta ti) = \Delta N(\Delta ti)/\Delta ti$

$$T_{m} = 1/M(m) \sum_{i=1}^{M(m)} \frac{N_{B}^{m}}{\alpha(\Delta t_{i})} (1 - exp(-\tau_{m}))$$

Residual service life time

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Nonmagnetic materials

Fraunhofer _{Institut} Zerstörungsfreie Prüfverfahren

Outlook

Fractal dimension D_F as a function of running time

Direction	x-axes along roling trace	y-axes
100 h	1.059	1.18
200 h	1.129	1.083
300 h	1.37	1.265
400 h	1.126	1.349

Fraunhofer _{Institut} Zerstörungsfreie Prüfverfahren

Outlook

Eddy current relaxation

$\begin{array}{l} <\mathbf{j}(t) > = <\mathbf{j}(to) - (<\mathbf{j}(to) - <\mathbf{j}(t \neq \infty)) \ (1 - R(t - to)) \\ R(t - to) = <\Delta\mathbf{j}(t) \ \Delta\mathbf{j}(to) > <\Delta\mathbf{j}(2> \ and \ \Delta\mathbf{j}(t) = \mathbf{j}(t) - \mathbf{j}(t \neq \infty) \end{array}$

3×10⁴

r

4×10⁴

2×10⁴

1×10⁴

0

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Conclusion

SHM – characterization of materials damage before cracking and without baseline! Fractal analysis of deformation structure → new working concept based on D_F!

➢For steel D_F increases with fatigue damage, however, the appearance of cracks and the stress release can locally reduce D_F.

- Symmetry arguments point at the existence of three universality classes.
- The fractal analysis of the offers the possibility to introduce the fractal concept into the inspection practise. Besides of D_F the RMS-value of Barkhausen noise has to be measured in order for crack indication
- Search is ongoing for similar approach to nonmagnetic materials (eddy current noise, Speckle-Photometry), it looks promising!
- IZFP is now developing a special device "FrakDim" with optimized working regime including fast soft ware. Specialized sensors will be manufactured.

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Fraunhofer Institut Zerstörungsfreie Prüfverfahren