M metirionic

Ranging in Wireless Sensor Networks by using Phase Difference Measurements

Active Reflector Principle

- Device A initiates ranging measurement
- Device A transmits carrier → device B performs phase measurement
- changing transmit direction in both devices
- Device B transmits carrier → device A performs phase measurement
- Device B transmits frame with measurement results to Device A
- Device A is able to calculate range
- Bidirectional traffic needed for devices with asynchronous time base

- $\phi=2\pi\Delta t/T$
- PLL is running at same frequency at TX and RX mode
- Receiver measures phase between LO signal and received carrier
- Phase measurement can be done at any down-converted signal since frequency conversion maintains phase information
- 2.4 GHz ISM Band (2400 2483 MHz) Reflector fstart fstop $\Delta \mathbf{f}$ Δf Δt Initiator $\Rightarrow \Delta \phi = \Sigma \Delta \phi_i / N$ $\Delta \phi_1$ $\Delta \phi_2$ $\Delta \phi_{\rm N}$ D₁ D_2 DN \Rightarrow D = Σ D_i / N
- Convenient Phase measurement at IF frequency in low-IF receiver

Straight-forward Distance Calculation (LOS): (Direct Path dominates)

Measurement Accuracy

Unique Characteristic: Interference Detection & Mitigation

Cont Error

Valid Vector: Ch's: 01 + 06 + 11

Valid Vector: all SIR

Contact: info@metirionic.com

WIRELESS DISTANCE MEASUREMENT