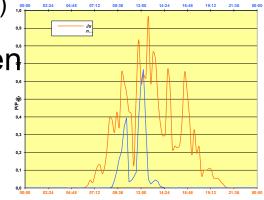
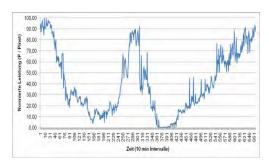

Netzintegration erneuerbarer Energien in Nordosten Deutschlands

Prof. Dr.-Ing Harald Schwarz Gesch. Direktor CEBra-Research

- Aktuelle Lage in der deutschen Energieversorgung
- Lösungsbeiträge der BTU Cottbus in Forschung und Lehre





Mit freundlicher Genehmigung des PIK-Potsdam Institut für Klimafolgenforschung, Prof. Stock

- Reduzierung des Stromverbrauches (Energieeffizienz)
- verstärkte Nutzung der Kernenergie
- Entwicklung von Verfahren zur CO₂-emissionsfreien
 Kohleverstromung (z.B. Oxyfuel-Verfahren)
- Nutzung regenerativer Energiequellen für die Stromerzeugung
 - * Wasser
 - * Biomasse
 - * Solarthermie
 - * Photovoltaik
 - * Windenergie

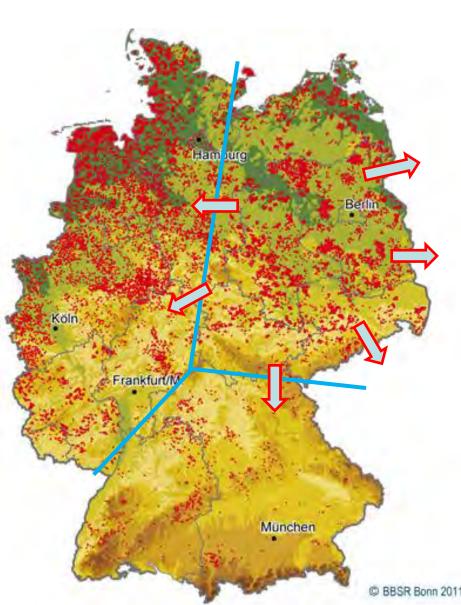
Höchste spezifische EEG-Leistung in NO-Deutschland

Nord-West-Region

-Einwohner 51,5 % -Windleistung 55,0 %

Wind: sehr hoch

Last: hoch


Süd-Region

-Einwohner 28,4 %

-Windleistung 3,6 %

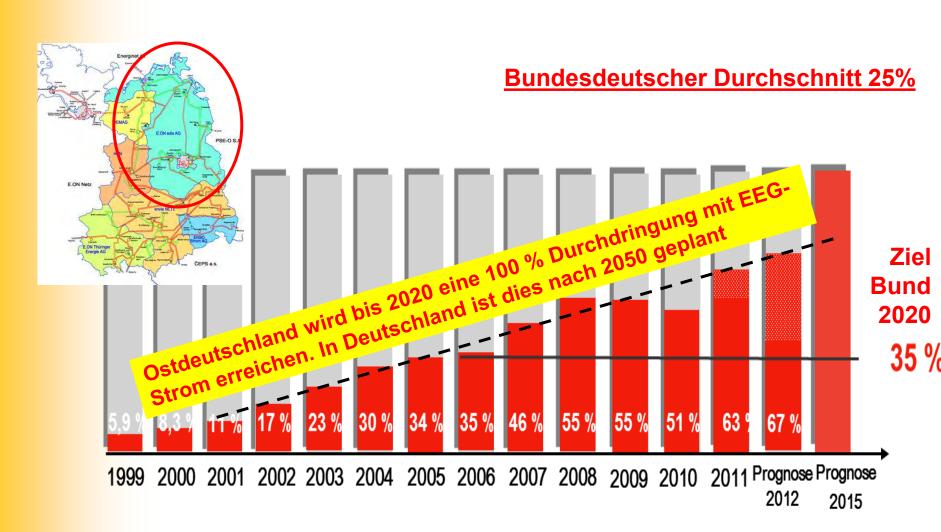
Wind: gering Last: hoch

Nord-Ost-Region

-Einwohner 20,1 % -Windleistung 41,4 %

Wind: sehr hoch Last: sehr gering

Erzeugerleistung liegt um ein Vielfaches über der Abnahme



	1990	2010	2030
Last	4 – 11	4 – 11	4 – 11
	GW	GW	GW
Erzeugung installiert	13 GW	35 GW	60 – 70 GW
Speicher-	12	20	20
Kapazität	GWh	GWh	GWh?

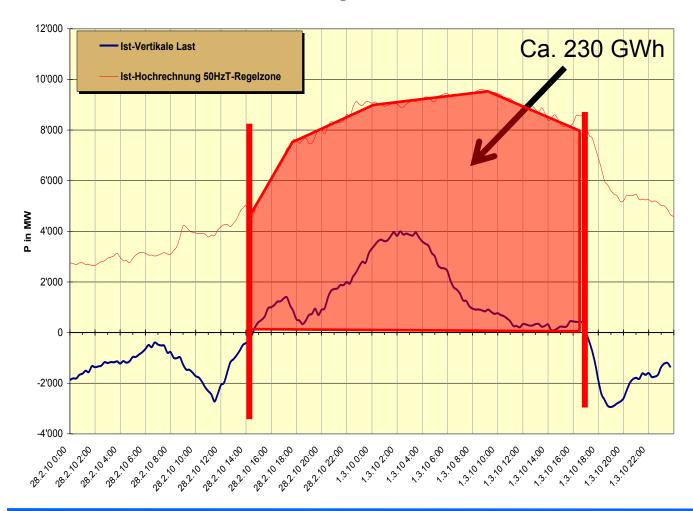
Mit freundlicher Genehmigung der e-on edis AG

Fast täglich Zwangsmaßnahmen zur Systemstabilisierung

	2007	2008	2009	2010	2011	2012 (31.07)
§13(1) meist redispatch	155	172	193	154	168	107
§13(2) Abschaltung EEG	0	3	4	6	45	52
§ 14 E.ON edis	k.A.	7	14	52	239	155
§11, §12 EEG	3	27	23	16	48	45
(nach ÜNB-Aufforderung) §13(2) EnWG MITNETZ-Strom	0	0	2	0	2	11

Anzahl der Eingreif- und Gefährdungstage nach EnWG §13 bei 50 Hertz-Transmission bzw. Tage mit NSM-Aufrufen bei E.ON edis AG und MITNETZ-Strom GmbH

Mit freundlicher Genehmigung der 50 Hertz-Transmission GmbH, MITNETZ-Strom GmbH, E.ON edis AG


		DENA-Studie 2 (2010)	Brandenburg- Studie 2 (2011)
Potentiale 2020	Wind Offshore	14,0 GW	
	Wind Onshore	37,0 GW	9,4 GW
	Photovoltaik	17,9 GW	4,6 GW
	Biomasse	6,2 GW	0,6 GW
	Geothermie	0,3 GW	
Netzausbau	400 kV-Neu	4.500 km	600 km
	110 kV-Neu /Ertüchtigung	Ca. 15.000 – 20.000 km	530 km + 1560 km

Speicherbedarf heute Faktor 10 über aktuellen Kapazitäten

Sturmtief "Xynthia": Windeinspeisung 28.02. – 01.03.2010 in der Regelzone 50Hz Transmission

Unplanbare Gradienten im Bereich mehrerer Großkraftwerke

Gradienten in der Regelzone 50 Hertz-Transmission

In 2005

in 15 min:

in 60 min:

in 24 h:

In 2009

in 15 min:

in 60 min:

in 24 h:

+/- 300 MW

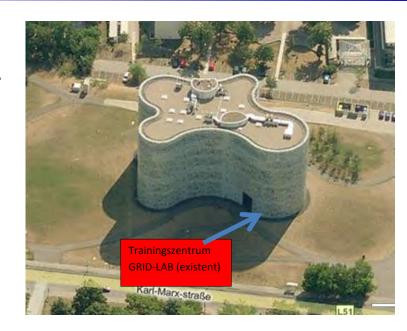
+/- 1.000 MW

+/- 5.000 MW

+/- 1.000 MW

+/- 3.000 MW

+/- 7.000 MW



BTU-Beiträge: Ausbildung /Training Systembetrieb

GridLab GmbH (An-Institut der BTU)

Kommerzielles Netztrainingszentrum von europäischer Dimension

BTU Netzforschungs- und Ausbildungszentrum

in Kooperation und mit Unterstützung von 50 Hzund GridLab

Modul "Power System Operation (8 SWS dt / en) im MSc Power Engineering bzw. MSc ET

BTU-Beiträge: Modellierung von Stromversorgungs-Netzen

2004 − DENA 1: $400 \text{ kV} \rightarrow 900 \text{ km}$; 110 kV \rightarrow k.A.

2008 – BBL 1: 400 kV → 600 km ; 110 kV → 1.200 km

2010 – DENA 2: 400 kV → 4.500 km ; 110 kV → k.A.

2011 – BBL 2: $400 \text{ kV} \rightarrow 600 \text{ km}$; 110 kV \rightarrow 2.100 km

Seit 2011 – BBL-Kabelnetze: führt bisherige Konzepte ad absurdum

Seit 2012 – Netzentwicklungsplan: für ostdeutsche 110 kV Netze unzureichend

Seit 2012 – BBL-Cluster-Netze: verlagert Netzausbau in Sondernetze

Ab 2013 – SMART Capital Region: überregionales SMART Grid BER / BBL

BTU-Beiträge: Neue Hochspannungsgeräte

Einsatz von Hochspannungsgeräten im Extremklima

Als Infrastruktur-Basis für F&E zukünftiger HS-Geräte wird als Großgeräte über den Neubau Energiezentrum eine große Fremdschicht- / Salz-Nebel-/Klimakammer beantragt

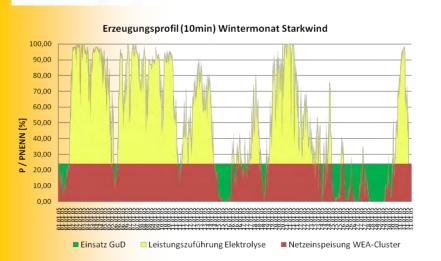
BTU-Beiträge: Neue Hochspannungsgeräte

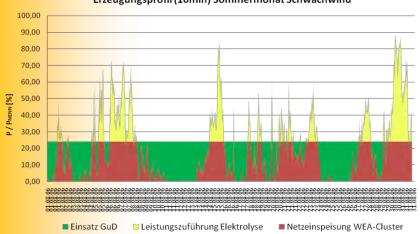
Hochspannungshalle de BTU

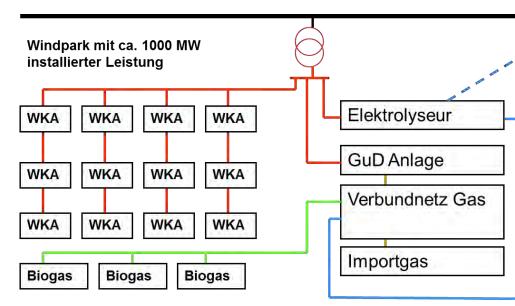
Klimakammer der BTU

BTU-Beiträge: Speichertechnologien / Elektromobilität

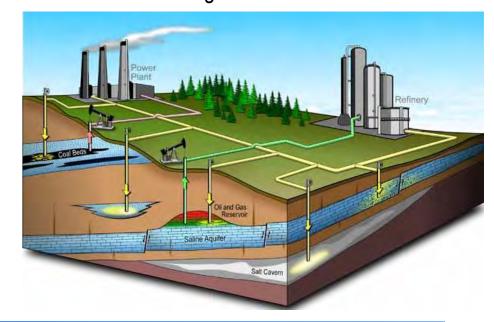
5% Elektrofahrzeuge, die gesteuert laden und rückspeisen, bringen ca. 5.000 MW Sekunden-reserve


- → Projekt e-SolCar (Leitprojekt BER-BBL)
- → Projekt SMART Capital Region (Nationales Schaufenster Elektromobilität)





BTU-Beiträge: Speichertechnologien / steuerbare Lasten

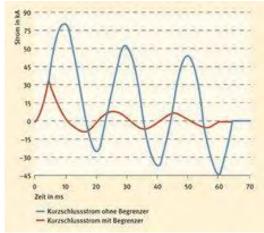


Gesicherte Leistung erneuerbarer Energie ist NULL

Regenerative Vollversorgung von BER / BBL erfordert einen Speicher mit 800 GWh und Finanzen von 4.800 Mrd €

Da die Energiewende bereits hohe Aufwendungen für EEG-Erzeugung und Netzumbau erfordert, ist eine preiswerte Komplementär-Erzeugung zur Sicherung des Industriestandortes Deutschland mehr als geboten

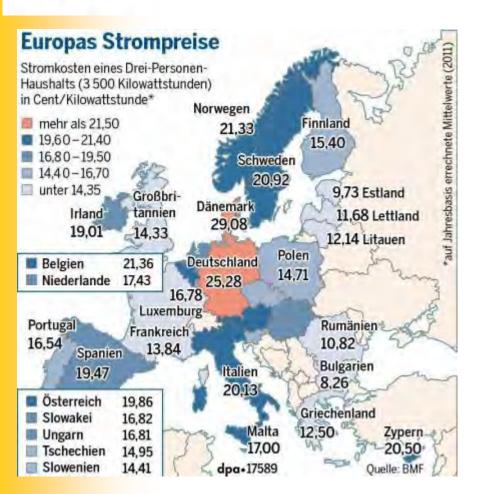
- → Kleinere Kraftwerksblöcke
 - → CO2-Abtrennung
- → Preiswerte heimische Kohle
- → Hochdynamische Fahrweise
- → Geringer technische Mindestleistung

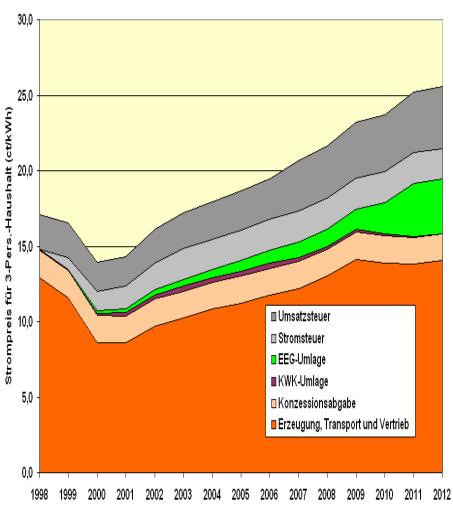


BTU-Beiträge: zukunftsweisende Kraftwerks-Elektrotechnik

Hochtemperatur-Supraleitender Strombegrenzer im Kraftwerk Boxberg

Kooperation BTU – Nexans - VE-Generation


BTU-Beiträge: Kosten und Regulierung der Energiewende


- Kosten der Energiewende versus Industriestandort Deutschland
 - EEG-Umlage
 - Netzausbau, Netznutzungsentgelte
 - Regelleistungskosten
- Emissionshandel
- Förderung von Speichern und Elektromobilität
- Regulierung und Anreize
- Energierecht
- Gas- und Wärmewirtschaft

BTU-Beiträge: Kosten und Regulierung der Energiewende

National, deutschsprachig

- Je 1-2 Studienrichtungen in den BSc / MSc-Programmen (6/4 Semester)
 - Elektrotechnik
 - Maschinenbau
 - Wirtschaftsingenieurwesen
- Nationale Promotion zum Dr.-Ing.

International, englischsprachig

- MSc Power Engineering mit derzeit 5 Dual Degrees, 400 Bewerbungen, 100 Einschreibungen zum WS 2012/13
- PhD Power Engineering mit diversen Dual Degrees in Vorbereitung

