Material und Prozessinnovationen in der industriellen Schicht- und Oberflächentechnik für die kostengünstige Bereitstellung erneuerbarer Energien

Bernd Szyszka

TU Berlin und PVcomB

Mail: bernd.szyszka@tu-berlin.de Tel.: +49 160 90672689

Oben: Hohlkatoden-Gasflusssputtern | Mitte: OPV Slot Dye Coating | Unten: Modellbasierte Prozessentwicklung

TU Berlin / TFD © Bernd Szyszka 15th Leibniz Conference of Advanced Science – Erneuerbare Energien 2013

1

Gliederung

1	Einleitung	Erneuerbare Energien und Beschichtungstechnik
		Einige Fakten
2	Technologien	Nanokomposite mittels Gasflusssputtern und ALD
		Organische Photovoltaik
		CVD vs. PECVD
		Multiskalen-Modellierung
3	TU Berlin und PVcomB	Konzepte & Technologien

4 Zusammenfassung & Ausblick

McKinsey (Hrsg.): Pathways to a Low-Carbon Economy (2009)

TU Berlin / TFD © Bernd Szyszka

1 Entwicklung des weltweiten Bedarfs an elektrischer Energie Szenario für $c(O_2) < 450$ ppm | $\Delta T < 2^{\circ}C$ | Reduktion AKWs

www.pik-potsdam.de/infodesk/climate-change-knowledge-in-a-nutshell | www.pik-potsdam.de/~anders

TU Berlin / TFD © Bernd Szyszka

1 PV Überkapazität – Produktionskapazität vs. Installationen

Immer noch deutliche Überkapazität, daher schlechtes Investitionsklima

F. Wessendorf (VDMA), 5. Thin Film Week 2013

TU Berlin / TFD © Bernd Szyszka

1 Preisentwicklung am Spot-Markt

Q1-11	Q1-12	Q1-13	
3.5	2.7 (-23% YoY)	2.1 (-22% YoY)	1,61 €/W
1.15	0.73 (-37% YoY)	0.50 (-32% YoY)	0,38 €/W
1.58	0.87 (-45% YoY)	0.66 (-24% YoY)	0,50 €/W
1.20	0.50 (-58% YoY)	0.36 (-28% YoY)	0,28 €/W
0.89	0.33 (-63% YoY)	0.21 (-36% YoY)	0,16 €/W
79	28 (-65% YoY)	17 (-39% YoY)	13 €/kg
	Q1-11 3.5 1.15 1.58 1.20 0.89 79	Q1-11Q1-123.52.7 (-23% YoY)1.150.73 (-37% YoY)1.580.87 (-45% YoY)1.200.50 (-58% YoY)0.890.33 (-63% YoY)7928 (-65% YoY)	Q1-11Q1-12Q1-133.52.7 (-23% YoY)2.1 (-22% YoY)1.150.73 (-37% YoY)0.50 (-32% YoY)1.580.87 (-45% YoY)0.66 (-24% YoY)1.200.50 (-58% YoY)0.36 (-28% YoY)0.890.33 (-63% YoY)0.21 (-36% YoY)7928 (-65% YoY)17 (-39% YoY)

- Extremer Kostendruck!
- Spot-Preis f
 ür a-Si Module in der Gr
 ößenordnung bzw. unterhalb der Herstellungskosten
 - Vgl. Prognose von Tokyo Elektron in 2012: Produktion in China für 0,35 €/Wp Produkt: Mikromorphe Module, 154 W_p, entsprechend η = 10,8 %
 - Hiesige Hersteller sind von diesen Kosten weit entfernt!

S. de Haan, 5. Thin Film Week April 2013 | T. Eisenhammer, IWTSSC-4, März 2012

1 Kostenlage bei der Herstellung von CIS Solarzellen Abschätzung 180 MWp Fab, Grenzebach, Standort D

- 180 MWp Fab für
 185 Mio € Invest
- 113 Mio €/a
 Betriebskosten
- η = 12 %, 270 W
 Module
- Abschreibung 7 a
- TOC: 0,78 €/W_p

 Zellaufbau: G / Mo (400 nm) / CIGS (1,9 µm) / CdS (50 nm) / i-ZnO (50 nm) ZnO:Al (1000 nm)

Total Cost of Ownership								
regarding VDMA norm 34160								
Proje	ct Nur	mber	0					
Proje	ct Ver	sion	0				Date	01.09.2011
				Summary Total Cos	t of Ownership			
				Vendor	Customer	Actual Value		Details
Ε			Costing Setup	184.965.245 €	0€	184.965.245 €	184.965.245 €	
	E1		Purchasing	169.215.245 €		169.215.245 €		
	E2		Infrastructure	15.750.000 €		15.750.000 €		
	E3		Miscellaneous	0€		0€		
В			Operating Costs Duration	791.530.008 €	0€	791.530.008 €	791.530.008 €	
	B1		Operating Costs / Year	113.075.715 €	0€	113.075.715€		
		IH1	Maintenance and Inspections	632.592 €		632.592€		
		IH2	Scheduled Repairs	443.087 €		443.087 €		
		IH3	Unscheduled Repairs	206.187 €		206.187 €		
		RK1	Occupancy Costs	278.588 €		278.588 €		
		MK1	Material Costs	68.810.847 €		68.810.847 €		
		EK1	Costs for Electric Power	20.553.396 €		20.553.396 €		
		EK2	Costs for Compressed Air	963.434 €		963.434 €		
		HB1	Operating Supplies	72.270 €		72.270€		
		EN1	Disposal Costs	1.051 €		1.051 €		
		PK1	Personnel Costs	21.107.921 €		21.107.921 €		
		WK1	Tooling Costs	6.342 €		6.342 €		
		RU1	Set-up Costs	0€		0€		
		LK1	Storage Costs	0€		0€		
		SO1	Miscellaneous	0€		0€		
V			Elimination	4.171.636 €	0€	4.171.636 €	4.171.636 €	
	V1		Dismantling	5.493.630 €		5.493.630 €		
	V2		Declining Balance	-1.321.994 €		-1.321.994 €		
	V3		Miscellaneous	0€		0€		
			Total Cost of Ownership					
			Total Cost of Ownership / Watt				0,7783€	/ Watt

E. Wenninger (Grenzebach), Otti Glas und Solar 2011

E. Wenninger (Grenzebach), Otti Glas und Solar 2011

TU Berlin / TFD © Bernd Szyszka 15th Leibniz Conference of Advanced Science – Erneuerbare Energien 2013

8

1 Standortvergleich und Skaleneffekte

E. Wenninger (Grenzebach), Otti Glas und Solar 2011

TU Berlin / TFD © Bernd Szyszka

1 Investitionskosten vs. Betriebskosten für einen Betrieb der Anlage über 7 Jahre

Investitionskosten: 185 Mio €
 Betriebskosten: 791 Mio €
 Konsequenz für TCO: 0,775 € / Wp mit 19 % Anteil Investitionskosten und 81 % Anteil Betriebskosten

Konsequenz:

- Geringer Impact bei Substitution bestehender Beschichtungslösungen (Hochvakuumtechnik) durch kostengünstigere Lösungen (Atmosphärendruckbeschichtung)
- Starker Impact f
 ür: (i) Wirkungsgradsteigerung und (ii) Minimierung der Materialkosten, hier sind die Glaskosten ganz wesentlich

2 Technologie

Modellierung

- Multiskalen-Modellierung f
 ür die digitale Fabrik
- DFT / DSMC / PIC-MC Rechnungen

Vakuumverfahren

- MEGATRONTM Sputtern
- Hohlkatoden-Gasflusssputtern

Technologisch neue Ansätze OPV Bandbeschichtung mittels Slot Dye Coating

2.1 Model based development: Filling the gap from 1st principle DFT modeling up to the digital factory

K. Roths et al., Forschungsagenda Oberfläche, DFO Service 2006, ISBN-10: 3834912301 * W. Körner, C. Elsässer, Physical Review B 81 (2010) 85324

TU Berlin / TFD © Bernd Szyszka 15th Leibniz Conference of Advanced Science – Erneuerbare Energien 2013

12

2.1 Beispiel: Diskussion grundlegender Materialfragen mittels **Density-Functional-Theory (DFT): Zustandsdichte ZnO:N**

- Dotierung Korngrenzen
 - Flache Zustände nahe am Valenzband Bilden Akzeptor-Niveaus 2^{60}_{20}
 - aus
- Dotierung Einkristall
 - N-Dotierung liefert tief liegende Zustände
 - Als Akzeptor-Niveaus ungeeignet

Fazit: An experimentelle Daten (Bandlücke) angepasste DFT unter Einbeziehen von Defekten (Korngrenzen) als praktisches Werkzeug für das Materialdesign!

B. Szyszka et al., Thin Solid Films 518 (2010) 3109

2.1 Exp. to model: 2D Simulation of a magnetron discharge Geometric decomposition of a reactor chamber

Empirical geometry

A. Pflug et al., Proc. SVC 52 (2009) 364

TU Berlin / TFD © Bernd Szyszka 15th Leibniz Conference of Advanced Science – Erneuerbare Energien 2013

14

CAD drawing (file format:

2.1 2D Simulation of magnetron discharges Difference between DC and pulsed mode

- Features in RF mode different to DC mode
 - Plasma density in bulk significantly increased
 - Strongly enlarged positive plasma potential
 - Ar⁺ / O₂⁺ ions escape in every direction
 - High ion flux and ion energy on substrate

DC power, 1.0 Pa, 50 W/m, 40 % O₂ in Ar

RF power, 13.56 MHz

A. Pflug et al., Materials Technology 26 (2011) 10

TU Berlin / TFD © Bernd Szyszka

2.2 Model -> Experiment: Serial Co-Sputtering

Problems during sputtering with conventional cathodes

Target poisoning

Unwanted reactions at the target: Rate > Stability > Film properties >

Target composition

• Target composition is fixed & limited due to manufacturing constrains.

Coupling of process parameters

• ZnO:Al: Change of $p(O_2)$ or T_s yields change of c(Al). How to separate?

In-situ control of deposition rate

• Complex optical monitoring. Implementation! Maintenance!

• Low deposition rate, costly machinery, waste of energy.

2.2 A solution for these problems:

Target composition of the primary target can be modified.

Setup allows for sputter yield amplification for metallic targets.

2.2 Experimental realization of the MEGATRON[™] process Serial co-sputtering with pressure separation

ZnO:Al SnZnO_x TiO_x:Nb In-Ga-Zn-O CIGS TiO₂:X

- Synthesis of new materials and control of doping levels -> n-TCO for PV applications, n-ASO for TFT application
- Available for retrofit by Fraunhofer IST / Interpane

B. Szyszka et al. Cur. Appl. Phys. 12 (2012) S2 | EP1697555B1: Method and device for magnetron sputtering

TU Berlin / TFD © Bernd Szyszka

2.2 Experimental realization of the MEGATRON[™] process Serial co-sputtering with pressure separation

a) Serial co-sputtering source (model)

b) First plasma in June 2010

TU Berlin / TFD © Bernd Szyszka

2.2 Example: Bi-doping of TiO₂

Improvement of morphology and enhancement of rate

a) TiO₂ @ 18.9 nm m/min

R_q = 0.81 nm, R_a = 0.65 nm d = 210 nm 0.00 µm 0.20 0.40 0.60 0.60

b) TiO₂:3.8 at.%Bi @ 29.4 nm m/min

R_q = 0.21 nm, R_a = 0.17 nm d = 326 nm

- AFM reveals fine grain size for both films
- Substantial decrease of surface roughness for TiO₂:Bi
- TiO_x:BiO_x targets are not available due to metallurgical reasons

2.2 Summary MEGATRON[™]

Ferchau Innovation Price 2011

Rotatable magnetron sputter source for serial co-sputtering at Fraunhofer IST

- For the 1st time, we've realized a magnetron coating module based on DSMC gas flow simulation and PIC-MC plasma simulation.
- Shielding tube allows for proper gas separation & increase of ion energy.

Serial co-sputtering of TiO₂:Bi

- Ceramic TiO₂ tube sputtering: Rate enhancement by 35 % due to serial cosputtering using Bi.
- Deposition rate of 34.2 nm m/min @ 18 kW for TiO₂:Bi (corresponds to 90 kW for 3.75 m cathode): Increase of dep. rate by 35 %.
- Excellent film properties:
 - Improved smoothness due to Bi-doping
 - No change of optical properties (550 nm: $k < 2 \times 10^{-3}$, n > 2.45)
 - Dense films, glass like morphology, moderate stress (~ -200 MPa)

2.2 Summary MEGATRON[™]

Serial co-sputtering of TiO₂:W

- Ceramic TiO₂ tube sputtering: Rate enhancement > 100 % due to serial cosputtering using W.
- Limit: Performance of the shielding: Onset of unwanted increase of p(O2) at highest growth rate conditions.
- Deposition rate of 55 nm m/min achieved: Increase of dep. rate by 100 %.

Serial co-sputtering of TiO₂:Nb

- Pathway for the control of Nb-doting.
- Preliminary results: $\rho = 2100 \ \mu\Omega$ cm for 210 nm thick film after annealing at 350 °C for 1 h in vacuum (large grain size anatase film)

22

2.2 Outlook: Further operation modes of the MEGATRON

- XRF: Measurement of target stoichiometry @ known Bi metallization: Allows for calculation of deposition rate.
- C tubes: Metallization is oxidized at the substrate, transfer of the precision of Ar sputtering to oxide film growth, similar to Meta Mode.

2.2 Transparent conductive oxides

- Plasma damage in DC ceramic target
 TCO sputtering
- Rotatable target damage modeling
- Prevention of plasma damage by reactive deposition
- Prevention of plasma damage by RF superimposed DC deposition

2.2 Plasma damage and target erosion / magnetic field Ceramic target ZnO:Al deposition, static deposition erosion

- Resistivity increase at racetrack position
- High energy particles damage on the growing film
- Due to negative oxygen ions, which are accelerated in the cathode sheath
- Strong dependence on target erosion and discharge voltage
- Strong need for low impedance sputter processes
- In particular for rotatable magnetrons

W. Dewald et al., Thin Solid Films 518 (2009) 1085 | W. Dewald et al., Proc. PVSEC 24 (2009) 2824

TU Berlin / TFD © Bernd Szyszka 15th Leibniz Conference of Advanced Science – Erneuerbare Energien 2013

magnet field strength

2.2 Modeling of TCO deposition process Negative oxygen ion issue

Model geometry

 Corresponding hardware (Fraunhofer IST)

2.2 Modeling of TCO deposition process Model features

- Simplified plasma chemistry
 - Species: Ar, O₂, Ar⁺, O₂⁺, O₂⁻, O⁻, e⁻
 - Elastic collisions between elecrons, ions and neutrals
 - Charge exchange collisions between ions and neutrals
- Negative O⁻ ions can be created at the target surface upon ion impact
- Parameters
 - Bipolar sine wave voltage ±250 V, 100 kHz
 - Total pressure = 300 mPa
 - Time step = 10 ps
 - Total physical time interval = 60 μ s (\rightarrow 6 x 10⁶ PIC-MC iterations)

2.2 Modeling of TCO deposition process Visualization of electrons and negative O⁻ ions

100 kHz sine wave, time interval between 50...60 μs shown

2.2 ZnSnO_x TCO Beschichtungsprozess

Widerstandsprofil vs. Modellierung des O⁻ Bombardements

- Experiment:
 - Widerstandsüberhöhung vor den Racetracks.
- Simulation:
 - Modellierung der negativen Sauerstoffionen (Erzeugung, Beschleunigung, Transport, Teilchenstrombilanz am Substrat)

2 Properties of reactive MF sputtered ZnO:Al films Static deposition

- Dependence of plasma damage on gas inlet system
- Formation of negative ions can be suppressed in reactive sputtering.

Position along substrate [cm]

S. Calnan et al., Thin Solid Films 516 (2008) 1242

2 Hohlkatoden-Gasflusssputtern (GFS Prozess)

p_{tot} = 0.1 ... 1 mbar

- Keine Targetvergiftung
- Beschichtung mit sehr hoher Rate
- Hohe Plasmadichte
- Niederenergetische Beschichtung
- Targetausnutzung > 80 %
- Die GFS-Technologie wurde in den 1980er Jahren in Adlershof entwickelt.*

* Akademie der Wissenschaften, Zentralinstitut für Elektronenphysik, Rudower Chaussee 5 T. Jung et al., Mat. Sci. Eng. A140 (1991) 528

TU Berlin / TFD © Bernd Szyszka

2 Material development using hollow cathode gas flow sputtering (GFS)

Hollow Cathodes Gas Flow Sputter System

- Scale-able system up to 1m, offered by FhG-IST
- More than 20 units installed

GFS Co-sputter process for Delafossite

- Remote process, no arcing due to purge gas
- Dense plasma / low energy, mbar, high rate

Simple and rugged, no turbo

Soft growth DC sputtering

Experiment

- Sputtering of Cu and Cr ring segments
- Control by OES and / or pressure
- Adjustable composition

T. Jung et al., Surf. Coat. Technol. 86-87 (1996) 218 | B. Szyszka et al., Thin Solid Films 518 (2010) 3109

TU Berlin / TFD © Bernd Szyszka 15th Leibniz Conference of Advanced Science – Erneuerbare Energien 2013

32

2 Potential of the GFS technology

Recent results	ZTO layers with mobility exceeding 50 cm ² /Vs
	 TiO₂:W layers capable for visible light induced decomposition of fatty acids
	p-type delafossite films using reactive GFS
	 UV-protection of polycarbonate with organic modified ZnO capable for more than 4 000 h global radiation.
Industrialization	 Pilot lines for 3D parts are being installed in industrial scale at Fraunhofer IST currently

K. Ortner et al., TCM 2012 | D. Koeßler et al., TCM 2012 | B. Szyszka et al., TSF 518 (2010) 3109 | Minerva Project

TU Berlin / TFD © Bernd Szyszka

2 Road map for oxide based, transparent electronics

- **1**st wave: n-TCOs as transparent conductors
- **2**nd wave: n-ASOs for oxide TFTs and related products
- **3**rd wave: oxide p-n junctions for oxide LEDs and oxide μ-electronics

Nikkei Electronics Asia November 2007 – Transparent electronic products soon a reality

TU Berlin / TFD © Bernd Szyszka

2 Amorphous oxides as high quality semiconductive materials

a) Covalent amorphous semiconductor (e.g. a-Si:H)

sp³-overlap (cryst. ordering)
 important for high mobility

b) Amorphous metal oxide (with (n-1)d¹⁰s⁰ (n \ge 4), e.g. InO_x)

- Spherical ns-orbitals overlap in a-MeO_x
- High mobility, even in amorphous state.

K. Nomura et al., Nature 432 (2005) 488 | H. Hosono et al., J. Non Cryst. Sol. 198-200 (1996) 165

TU Berlin / TFD © Bernd Szyszka

2.2 Conventional a-Si:Η / μc-Si:Η 50 MWp plant

More challenging than expected...but a story to be continued

M. Liehr et al. (Leybold Optics), Presentation V2009 (Dresden, Oct. 2009)

TU Berlin / TFD © Bernd Szyszka 15th Leibniz Conference of Advanced Science – Erneuerbare Energien 2013

37

2.2 Substitution of PECVD by novel processes Hot wire CVD (CAT CVD)

a) State of the art: Large Area PECVD

- AMAT SunFab: Gen. 8.5 (5,7 m²)
 Oerlikon KAI 1200: Gen 5 (1,5 m²)
- Low rate (< 1 nm/s)</p>
- Poor material utilization
- Complex technology
- Adopted from flat panel display

b) Hot-wire CVD

- Activation of SiH_4 at the hot wire
- Simple, robust, in-line compatibel
- Lab: a > 1.5 nm/s achieved
- Scaling: 50 x 60 cm² @ FhG-IST
- Material utilization > 80 %

TU Berlin / TFD © Bernd Szyszka

2.3 Rückblick: Herstellung von Videoband mittels Slot-Dye-Coating

- Schnelle Beschichtung von Rolle zu Rolle:
 - Atmosphärendruckprozess
 - Schichtdicke ~40 μm
 - 1200 m/min bei 120 cm Breite,
 24/7 Betrieb
- Prozessschritte:
 - Lack-Vorbereitung (Suspension herstellen, mischen, filtern)
 - Band Reinigung
 - Hochgeschwindigs-Coating endlos von Rolle-zu-Rolle
- Aufgabe OPV:
 - Transfer auf OPV Stacks
 - Kontaktierung / Barrieren / Effizienz / Lebensdauer

TU Berlin / TFD © Bernd Szyszka 15th Leibniz Conference of Advanced Science – Erneuerbare Energien 2013

5 39

2.3 Entwicklung der Kostensituation bei Videotapes: Faktor 17 in 35 Jahren

TU Berlin / TFD © Bernd Szyszka

2.3 OPV Kostenszenario

TU Berlin / TFD © Bernd Szyszka

2.3 OPV: Vakuumbasierte vs. nasschemische Prozesse

H. Hoppe, IDTechEx Printed Electronics & Thin Film Week, April 2013

TU Berlin / TFD © Bernd Szyszka

Results PPP-Project R2R OPV System

Gen1 (Starting PPP)

layer	back electrode	
process	P3: laser ablation	

Generation	1
semitransparent electrode	ITO/PEDOT:PSS
active layer	P3HT:PCBM
ETL interlayer	none
back electrode	aluminium
efficiency target	2.5%

Gen4 (planed PAPPA)

layer	back electrode
process	P3: laser ablation

Generation	4
semitransparent electrode	silver grid & PH1000 (ZnO)
active layer 1	to be defined
ETL interlayer	TiOx
HTL interlayer	PEDOT:PSS
active layer 2	to be defined
ETL interlayer	TiOx
back electrode	AL (AG or AU)
efficiency target	8-10%

D. Teckhaus, IDTechEx Printed Electronics & Thin Film Week, April 2013

3 Zusammenfassung und Ausblick

Relevanz des Themas "Beschichtungen für erneuerbare Energien"

Vakuumverfahren

 OPV mittels Slot-Dye Bandbeschichtung

- Schlüsselthema für die Energiewende und für das Erreichen der CO₂-Einsparziele
- Massiver Ausbau notwendig
- Neue Ebene des Verständnis durch Modellierung
- MegatronTM: Schlüsseltechnologie für PVD
- Hohlkatoden-Gasflusssputtern: Neue
 Basistechnologie f
 ür die Materialentwicklung
- Basierend auf der Video-Tape-Fertigung
- Hoch innovatives und ausbaufähiges Verfahren

Crystals are like people, it is the defects in them which tend to make them interesting!

Prof. John Ziman (solid state physicist and humanist, born1925, died 2005)

Vielen Dank für die Aufmerksamkeit

TU Berlin / TFD © Bernd Szyszka

2 Conditions for ZnSnO_x deposition by C-Mag sputtering

Process	Bipolar CMAG 61.5 kHz		
System parameters	Base pressure	P ₀	< 5 x 10 ⁻⁶ mbar
	Cathode		Dual cylindrical cathode (Interpane)
	Generator		AE Crystal
	Target to substrate dist.	d _{ST}	190 mm
	Target material		ZnO:SnO ₂ (Zn:Sn = 68:32)
Process parameters ZnO:SnO _x	Gas flows	q(MG)	Ar: 190 sccm, Ar+10%O ₂ : 50 sccm
deposition	Total pressure	P _{tot}	≈ 400 mPa
	Power	Р	~ 15 kW / bipolar MF @ 61.5 kHz
	Substrates		Float glass
	Carrier speed	V _C	Static, 15 min

2.2 Example: Nb-doping of TiO₂ Synthesis of TiO₂ based TCOs by MEGATRON sputtering

- 2 x 1 kW with TiO₂ rotatable, 2 x 200 W with Nb planar targets
- Annealing at 350 °C in vacuum for 1 h -> large anatase grains > 10 μm
- d = 211 nm, R_{sh} = 99.8 Ω , ρ = 2100 μΩcm, T_v = 67.6%, n = 2.45

a, b: T. Hitosugi et al., JVSTA 26 (2008) 1027

TU Berlin / TFD © Bernd Szyszka

