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Single Particle Bioanalytics

A newly emerging field in bioanalytics based on biomolecular binding detected label-free at metal
nanoparticles is introduced. Thereby particles which show the effect of localized surface plasmon
resonance (LSPR) are used as plasmonic transducers. They change their spectroscopic properties
(a band in the UV-VIS range) upon binding of molecules. This effect is even observable at the sin-
gle nanoparticle level using micro spectroscopy and presents the base for a new field of single par-
ticle bioanalytics with the promise of highly parallel and miniaturized sensor arrays. The paper in-
troduces this approach and shows first result from our work regarding the detection of DNA
binding at single nanoparticle sensors.

1. Introduction

Optical biosensing techniques

A rapid growth in the development of highly selective and sensitivity biosensors for drug discov-
ery, medical diagnosis and monitoring of diseases, detection of pollutants and biological agents
has occurred in the past two decades (Turner 2000). Optical biosensors are widely applied due to
the advantages of a highly sensitive and real-time detection of biomolecular interaction. Various
sensing transduction mechanism like fluorescence (Russell et al. 1999), chemiluminescence
(Chan and Nie 1998; Chan et al. 2002), light absorption and scattering (Malinsky et al. 2001; McFar-
land and Van Duyne 2003), reflectance (Hicks et al. 2005), Raman scattering (Nie and Emory
1997; Jiang et al. 2003; Zhang et al. 2005) and surface plasmon resonance – SPR (Mrksich et al.
1995; Berger et al. 1998; Yonzon et al. 2004) are the basis of optical sensing techniques.

SPR vs. LSPR

The excitation of surface plasmon polaritons is a standard tool for measuring adsorption of mole-
cules onto metal (typically gold and silver) structures as planar thin layers (SPR) or as nanoscale
structures (LSPR). The label-free detection of binding-induced refractive index changes have been
widely used to monitor analyte-surface binding interactions at or near a thin metal surface (Lied-
berg et al. 1983; Homola et al. 1999) including the adsorption of small molecules (Jung et al. 1998;
Jung and Campbell 2000; Jung and Campbell 2000), antibody-antigen binding (Berger, Beumer
et al. 1998), protein adsorption on self-assembled monolayers (Frey et al. 1995; Mrksich, Grun-
well et al. 1995; Rao et al. 1999), ligand-receptor binding (Hendrix et al. 1997; Perez-Luna et al.
1999; Jung et al. 2000), DNA and RNA hybridization (Jordan et al. 1997; Nelson et al. 2000; Pe-
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terson et al. 2000; Heaton et al. 2001), and DNA-protein interactions (Brockman et al. 1999).
While surface plasmon resonance is highly sensitive to refractive index changes down to 2x106

nm RIU-1 (Jung, Campbell et al. 1998), localized surface plasmon resonance at metal nanostruc-
tures shows a short (and tunable) characteristic electromagnetic field decay length (5-15 nm or 1-
3 % of the light’s wavelength) providing the LSPR nanosensor with its enhanced sensitivity (Haes
et al. 2003; Haes et al. 2004; Kvasnicka and Homola 2008). The small sensing area (down to a
single particle) with its enormous parallelization and integration potential, the temperature inde-
pendency and also the dramatic difference in costs (Haes, Zou et al. 2004) make the LSPR sensor
a promising tool for bioanalytics.

LSPR basics

Early understanding of the physics of nanoparticle plasmons dates back to Faraday (Faraday 1857)
and Mie (Mie 1908), and the extraordinary optical properties have been the subject of extensive
studies (Kreibig and Vollmer 1995; Bohren and Huffman 2007). Noble metal nanoparticles exhib-
it a strong UV-visible extinction band which is not present in the spectrum of bulk material (Mul-
vaney 1996; Link and El-Sayed 1999; Haynes and Van Duyne 2001). This phenomenon is known
as localized surface plasmon resonance (LSPR) and the extinction band occurs when the incident
photon frequency is resonant with the collective excitation of the conduction electrons. It is well
established that intrinsic parameters like size, geometrical shape, material and composition, but
even more extrinsic parameters such as charge distributions and dielectric properties of the nano-
particle’s immediate environment strongly influence the maximum peak wavelength of the LSPR
spectrum (Kreibig and Vollmer 1995; Mulvaney 1996; Haynes and Van Duyne 2001; Kelly et al.
2002; Sönnichsen et al. 2002).

Ensemble – particle layer – single particle

The nanoparticle-based optical sensing technique allows for a quantitative detection of biological
and chemical targets (Malinsky, Kelly et al. 2001; Yonzon, Jeoung et al. 2004). The high sensitiv-
ity of noble metal nanoparticles to adsorbate-induced changes in the dielectric constant in the en-
vironment is the basis of this sensing principle. The LSPR extinction maximum of an ensemble of
nanoparticles is thereby measured by UV-visible extinction spectroscopy (Jensen et al. 2000; Ma-
linsky et al. 2001). Various kinds of nanoparticles like spheres, rods or prisms (gold, silver) have
been used to investigate biomolecular recognition of distinct biological systems such as biotin-
streptavidin binding, antibody-antigen interaction  or PNA/DNA hybridization (Nath and Chilkoti
2004; Endo et al. 2005; Beeram and Zamborini 2009). Arrays of triangular silver nanoparticles for
example were employed to sense streptavidin with a subpicomolar limit of detection (Haes and
Van Duyne 2002). Tuning of the plasmon frequency of nanoparticles across the visible to near-
infrared by utilizing different geometries and sizes has been demonstrated (Haynes and Van
Duyne 2001). While these measurements are based on ensemble-averaged spectral properties, the
extension of LSPR-sensing to single nanoparticles will provide several important improvements
like reducing the absolute detection limit down to a few molecules on the particle surface (Riboh
et al. 2003), small sample volumes (attoliter range), the noninvasive nature making them an ideal
platform for in vivo quantification (Xu and Kall 2002), implementation in multiplex detection
schemes by controlling size, shape and chemical modification of individual nanoparticles, and the
development of sensing technique with a high signal-to-noise ratio to measure the LSPR scattering
spectrum of single nanoparticles.
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Single particle spectroscopy

While the visual observation of individual nanoparticles by ultramicroscopy was reported by Zsig-
mondy already hundred years ago, recently many groups combined this dark field illumination
technique with micro spectroscopy to characterize the optical properties of single particles by
measuring the LSPR scattering spectrum (Mock et al. 2002; Mock et al. 2003; Nehl et al. 2004).
Investigations of tuning the LSPR frequency by changing the material composition and shape of
chosen nanoparticles demonstrated the potential of this single particle spectroscopy (Wang et al.
2005; Becker et al. 2008; Henkel et al. 2009; Khalavka et al. 2009). In 2003, Feldmann and co-
workers reported the biomolecular recognition of biotin-streptavidin interaction on single gold
nanosphere by detecting the spectral shift using micro spectroscopy (Raschke et al. 2003). Many
other biological issues have been approached by applying the binding of biotin to streptavidin
(Sönnichsen et al. 2005; Baciu et al. 2008; Nusz et al. 2008). Interparticle coupling effects with
DNA spacer molecules between the nanoparticles for a defined distance have been monitored by
several groups (Sönnichsen, Reinhard et al. 2005; Lee et al. 2008; Sannomiya et al. 2008). Also
different biological systems like antibody-antigen interaction (Cao and Sim 2009), aptamer-avidin
binding (Hernandez et al. 2009), oxidation of ascorbic acid (Novo et al. 2008) and antibody un-
binding-studies (Mayer and et al.) have been examined in detail. Of great interest in molecular bio-
logy are detection and analysis of specific DNA sequences via nucleic acid hybridization (Mar-
razza et al. 1999; Minunni et al. 2001). A fast and reliable determination of nucleic acid sequence
plays an important role in clinical diagnosis, food safety monitoring and forensic and environmen-
tal analyses (Tichoniuk et al. 2008).

Sensing of DNA hybridization

A first step in determining the hybridization event of nucleic acids on individual nanoparticles by
micro spectroscopy was done by C. Sönnichsen in 2005. A single-stranded oligonucleotide was
attached on the surface between two gold nanospheres. Binding of a second single-stranded DNA
molecule with complementary sequence to the immobilized oligonucleotide was monitored as a
slightly red shifted LSPR spectrum (Sönnichsen et al. 2005).

Own work

In this work we demonstrate the use of single gold nanoparticles as sensing platform for a label-
free detection of hybridization events of single-stranded capture oligonucleotides with comple-
mentary target sequence.

2. Experimental

Chip preparation

Biosensing experiments were performed on borosilicate glass substrates with a microstructured
chrome grating (as finder structure for relocation of individual particles) created by standard lift-
off photolithographic process. Before usage a protecting resist layer was removed and the chips
were pre-cleaned with organic solutions (acetone and ethanol) and water in ultrasonic bath for 10
minutes. After drying the glass substrates they were cleaned by plasma etching (2 x 6 min, 50 W,
5 Pa).
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Immobilization of nanoparticles

After the cleaning procedure the chips were silanized wet-chemically with 3-aminopropyltrieth-
oxysilane (APTES) for 10 minutes followed by cleaning with water in ultrasonic bath for 5 min-
utes. For immobilization, a nanoparticle solution was given onto the substrates and was incubated
for one hour on a thermo mixer at room temperature. Surface characterization was done by dark
field microscopy and AFM measurements.

DNA immobilization and hybridization

After immobilizing the gold nanoparticle on a glass substrate via silane chemistry, single-stranded
capture oligonucleotides bearing a thiol-functionalization at their 5’-end were attached to the par-
ticle surface by thiol-gold interaction for 2 h in 1 M KH2PO4 buffer. Afterwards the single-strand-
ed target DNA with a complementary sequence was hybridized in 2 x SSC buffer for 2 h to the
capture oligonucleotide. Towards each step the scattering spectra of the particle was recorded and
compared with each other. 

Combined dark field microscopy and micro spectroscopy

Visualization of the immobilized nanoparticles was done by dark field microscopy in transmission
and reflection mode. The spectra of individual gold nanoparticles were collected by an AxioIm-
ager Z1m (Carl Zeiss Microimaging, Göttingen, Germany) optical microscope in dark field geo-
metry. A tungsten halogen lamp with a continuous spectrum and a color temperature of 3200K
serves as light source. The dark field configuration blocks the directly transmitted light, whereby
only the scattered light was detected by passing through a pinhole to a spectrometer. The pinhole
was coplanar to the tube lens, i.e. the pinhole was in the magnified, real image, and has a diameter
of 100 µm. The light from pinhole is passed through a multi mode fiber to a Acton Research Spec-
traPro 2300i micro spectrometer (Princeton Instruments, Trenton, NJ, USA) with a grating with
150 lines and a peltier cooled CCD camera.

Fig. 1: (a) AxioImager optical microscope for visualization of individual gold nanoparticles in dark field geometry.
A micro spectrometer for detecting the spectral information of chosen nanoparticles is coupled to the microscope by
a mutli mode fiber (orange). (b) Scheme of the experimental setup for investigating the optical properties of single
nanoparticles.

(a) (b)
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3. Results

The maximum peak position and intensity of the LSPR plasmon band strongly depends on refrac-
tive index changes in the local environment of noble metal nanoparticles. A first recognition layer
was attached to the surface of glass immobilized nanoparticles and cause a red shift in the LSPR
resonance due to refractive index changes from that of air (nair) to that of the biological layer
(nDNA). Binding of analyte molecules leads to a further red shift of the LSPR maximum. Spectra
of each step could be visualized by micro spectroscopy for detecting the LSPR maximum shift. A
scheme for the LSPR sensing principle is shown in Figure 2.

Fig. 2: Schematic presentation of the LSPR resonance of a single nanoparticle (yellow). A red shift due to the binding
of capture DNA on an individual gold nanoparticle (blue) followed by a further red shift due to the hybridization of
complementary target DNA to the capture DNA (red) is shown.

In our experiments, 80 nm gold nanoparticles served as plasmonic transducer for detecting the
binding events. The first step was to measure the spectral information individual gold nanoparti-
cles immobilized at glass surface (Fig. 3, lower curve). A dominant peak at about 550 nm is ob-
served, as expected for gold nanoparticles of this size range. A zoom (inset) gives a more precise
picture. In a following step, the capture oligonucleotide, containing a thiol group at the 5’-end, was
attached to the particle surface by a thiol-gold interaction. As result, the particle surface is now
covered with a rather continuous layer of terminally attached single-stranded DNA molecules. Be-
cause this arrangement changes the dielectric properties at the particle surface one would expect
an effect in the measured spectrum. The spectrum (center curve in Fig. 3) shows (compared to the
spectrum discussed before) a red shifted LSPR maximum due to a local refractive index change
near the particle surface from air (nanoparticle with air as surrounding medium; nair = 1,00) to that
of DNA (nDNA = 1,75). Afterwards the complementary target oligonucleotide was hybridized to
the particle immobilized capture DNA and a further spectrum was measured. Again, a red shift
could be detected. The larger red shift (from 549 nm to 579 nm) could be observed for the immo-
bilization step of the capture DNA because of the obvious refractive index change (see Figure 3).
A smaller red shift was observed for the hybridization of the analyte DNA molecules (from 579
nm to 595 nm). This difference could be attributed to a not 100 % efficiency of DNA hybridization
(so that some capture DNA are still single-stranded) and/or to the larger distance from the surface
of the target DNA compared to the surface-attached capture molecules.
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Fig. 3: Sensing of DNA hybridization on an individual 80 nm gold nanoparticle. The shift of the LSPR maximum can
also be seen by the naked eye in the dark field images (color change from green to yellow). 

4. Conclusion and Outlook

The results show that biomolecular binding events can be detected even on the very small surface
area of individual nanoparticles. It is possible to monitor the success of certain surface modifica-
tion steps by this label-free bioanalytical approach. In contract to other label-free techniques such
as SPR sensing (e.g. the Biocore principle), the demonstrated technique has a comparable sensi-
tivity but requires less sophisticated readout equipment. Moreover, extended miniaturization as
well as parallelization is feasible. One can expect that detection schemes based on the demonstra-
ted principle are important contributions for method developments in bioanalytics.
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Ein neu aufkommender Bereich in der Bioanalytik, der auf einer labelfreien Detektion von
biomolekularen Bindeereignissen basiert, wird vorgestellt. Als plasmonische Signalgeber werden
dabei Partikel verwendet, die den Effekt der lokalisierten Oberflächenplasmonresonanz (loca-
lized surface plasmon resonance – LSPR) zeigen und ihre spektroskopischen Eigenschaften (eine
Bande im UV-vis-Bereich) durch Anbindung von Molekülen ändern. Dieser Effekt kann sogar auf
Einzelpartikelebene mittels Mikro-spektroskopie beobachtet werden und bildet damit die Grund-
lage für einen neuen Bereich der Einzelpartikel-Bioanalytik, die hoch parallele und miniaturi-
sierte Sensorarrays verspricht. Der Beitrag stellt diesen Ansatz vor und zeigt erste Ergebnisse un-
serer Arbeit bezüglich der Detektion von DNA-Anbindung auf Einzelpartikelsensoren.

[06.09.10]
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