Recycling von Seltenen Metallen aus Prozesswässern der Metall-Bergbauindustrie

I. Voigt, M. Weyd, H.-J. Friedrich, B. Faßauer, Fraunhofer IKTS

Inhalt

- 1. Einleitung
- 2. Elektrochemische Behandlung von Bergbauwässern
- 3. Konditionierung von Thermalsolen in der Tiefen Geothermie
- 4. Rückgewinnung von Metallen aus Sekundärrohstoffen
- 5. Rückgewinnung von Metallen aus Bergbauwässern
- 6. Zusammenfassung

Fraunhofer IKTS

Institutsteile

Dresden (IKTS-DD)
 Nichtoxidkeramik
 Brennstoffzellen

Hermsdorf (IKTS-HD)OxidkeramikMembrantechnik

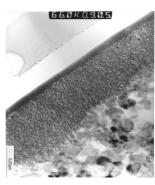
Dresden (IKTS-MD)MaterialdiagnostikPrüfverfahren

Fraunhofer Center

for Energy Innovation CEI, Connecticut/USA

Applikationszentren

- Applikationszentrum Batterietechnik Pleißa, Sachsen
- Applikationszentrum Bioenergie Pöhl, Sachsen
- Applikationszentrum Membrantechnik Schmalkalden, Thüringen
- Bio-Nano-Anwendungslabor BNAL, Leipzig, Sachsen



Membranentwicklung am Fraunhofer IKTS

Support

- Scheiben
- Hohlfasern
- Kapillaren
- Rohre
- Waben

Membran

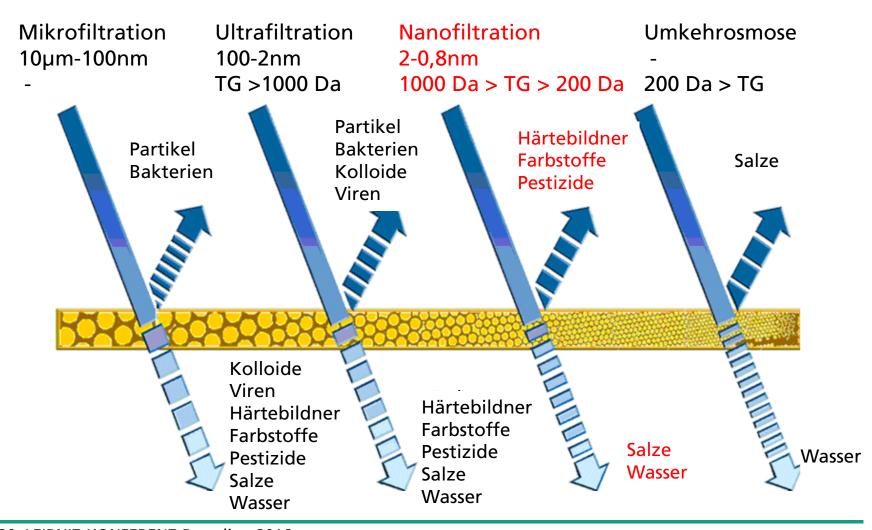
- porös
- dicht
- leitfähig
- durchströmbar
- diffussiv

Modul

- Stacks
- Rohrbündel
- Kapillarbündel
- Hohlfaserbündel

Anlage

- Dead-end
- Cross-flow
- Batch-Anlage
- Conti-Anlage
- Membranreaktor


Anwendung

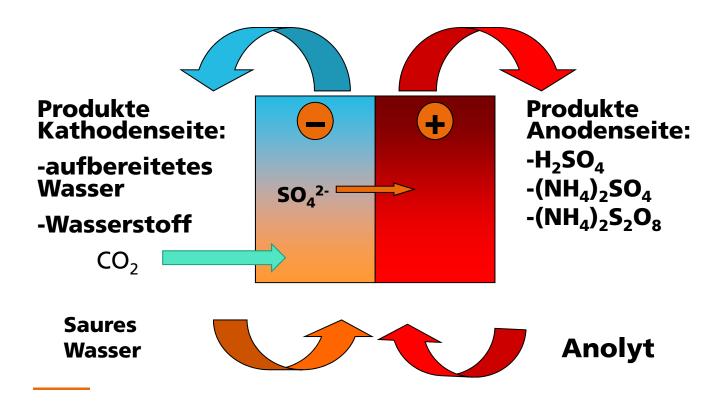
- Flüssigfiltration MF, UF, NF
- Pervaporation
- Dämpfepermeation
- Gastrennung

Unser Angebot:

- Membranentwicklung
- Membranmuster von 0,1 m² ... 1.000 m²
- Membranerprobung, Pilotierung, Demonstration
- Technologietransfer der Membranherstellung

Membranverfahren

Kommerzieller Anbieter: inopor GmbH


	Material	Mittlere Porengröße	Trenngrenze	offene Porösität	
Microfiltration inopor® micro	α-Al ₂ O ₃	800 nm 600 nm 400 nm 200 nm 100 nm 70 nm		40 % - 55 %	
	TiO ₂	800 nm 250 nm 100 nm			
	ZrO ₂	110 nm			
Ultrafiltration inopor [®] ultra	γ-Al ₂ O ₃	10 nm 5 nm	7500 D		
	TiO ₂	30 nm 5 nm	8500 D	30 % - 55 %	
	ZrO ₂	3 nm	2000 D		
Nanofiltration inopor® nano	SiO ₂	1.0 nm	600 D		
	TiO ₂	1.0 nm 0.9 nm	750 D 450 D	30 % - 40 %	

2. Elektrochemische Behandlung von Bergbauwässern

- Sulfat kann nur sehr schwierig selektiv abgetrennt werden
- Membranelektrolyse zur Abtrennung von Sulfat, Eisen, Mangan, Uran, Thorium - (RODOSAN®-Verfahren)

2. Elektrochemische Behandlung von Bergbauwässern

 Saure, sulfatreiche und schwermetallbelastete Wässer stellen ein weltweites Problem bei der Förderung von Braun- und Steinkohle sowie von sulfidischen Erzen dar

Pyrit (FeS₂) als Begleitmineral z.B. der Braunkohle

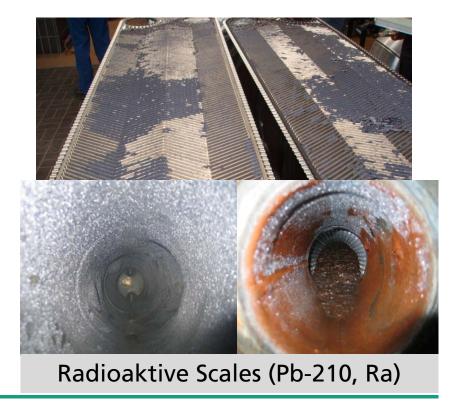
$$2 \text{ FeS}_2 + 7.5 \text{ O}_2 + \text{H}_2\text{O} \rightarrow 2 \text{ Fe}^{3+} + 4 \text{ SO}_4^{2-} + 2 \text{ H}^+$$

$$2 \text{ Fe}^{3+} + 3 \text{ SO}_4^{2-} + 2 \text{ H}_2\text{O} \rightarrow 2 \text{ Fe}(\text{OH})\text{SO}_4 + 2 \text{ H}^{++} \text{ SO}_4^{2-}$$

Entstehung schwefelsaurer Seen als Endstadium des Bergbaus

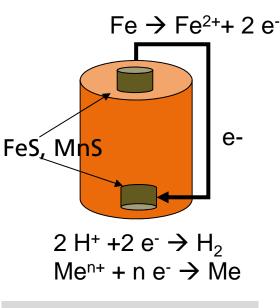
2. Elektrochemische Behandlung von Bergbauwässern

- Entwicklungsstand: technischer Pilotmaßstab 5 ...10 m³ / h
- Erprobung für verschiedene Wassertypen über 20.000 h
- Konversion eines Wasserschadstoffs (Sulfat) in Düngemittel


Membranelektrolyseur

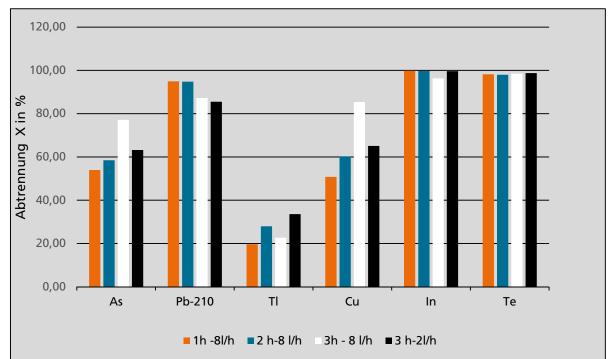
3. Konditionierung von Thermalsolen in der Tiefen Geothermie

- Verstärkte Nutzung der Geothermie wichtiger Baustein der Energiewende
- Häufiges Problem: "Scaling"
- Konzept: in-situ Elektrochemische Abtrennung

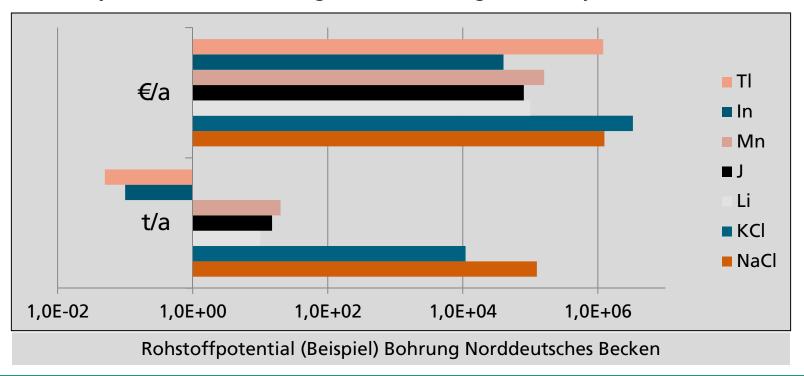

3. Konditionierung von Thermalsolen in der Tiefen Geothermie

- Voruntersuchungen: Scalebildung ist an Austausch elektrischer Ladungen gebunden und kann elektrochemisch beeinflusst werden
- Derzeit: Entwicklung eines elektrochem. Abscheidesystems (BMWi-Projekt)
- Ziel: Rückhalt bereits in der Bohrung bzw. "Solekonditionierung"

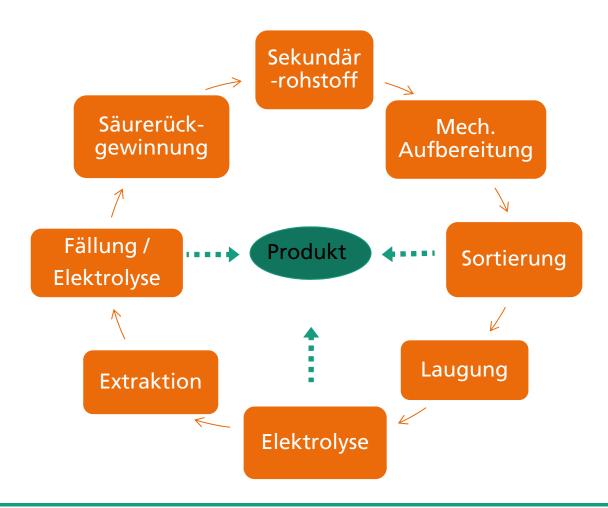
stimuliertes Scaling


Prinzip Scalebildung

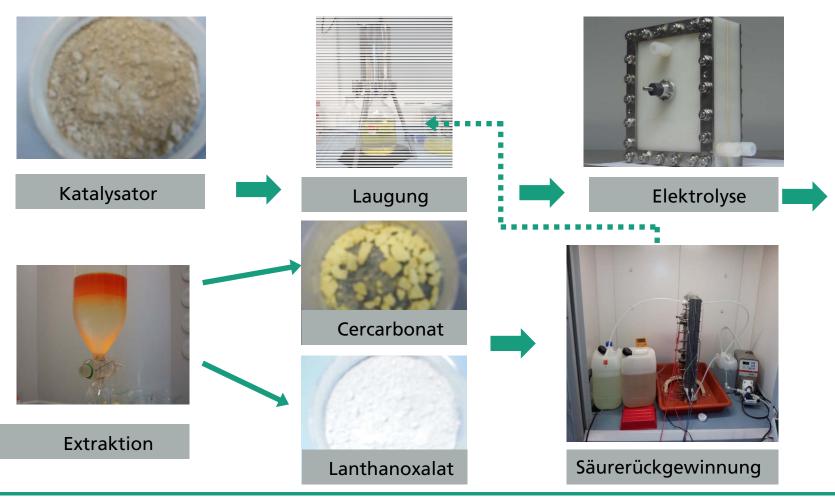
In-situ-Teststand (Patent)

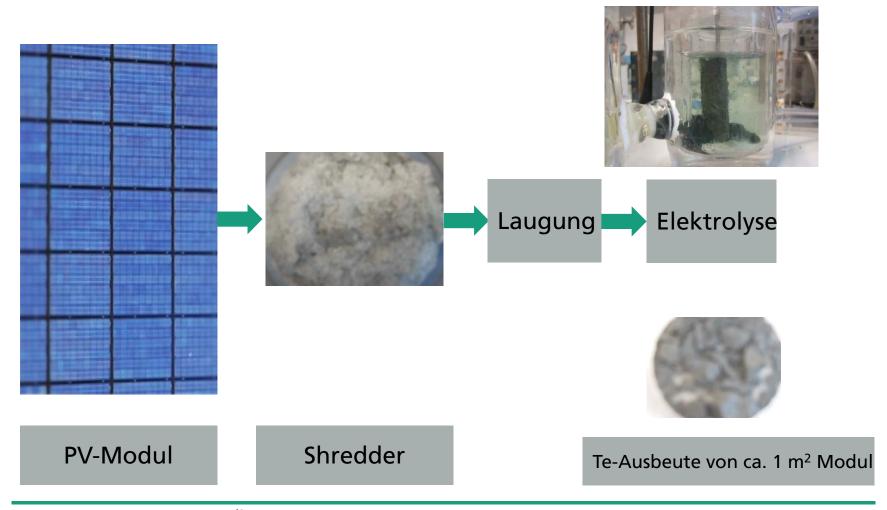

3. Konditionierung von Thermalsolen in der Tiefen Geothermie

- Kritische Scalebildner sind effizient abscheidbar (Pb-210, Cd, As)
- Sehr gute Abscheideraten werden auch für Indium und Tellur erzielt
- Gegenwärtig: Optimierung der Abscheidebedingungen und der Verweilzeit (Reaktorauslegung)



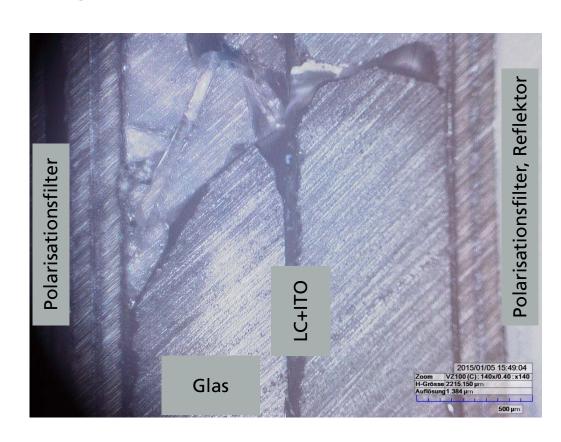
3. Konditionierung von Thermalsolen in der Tiefen Geothermie


- Teilweise beachtliches Rohstoffpotential der Solen (NaCl, KCl, Li, J, Mn, Zn, In, Tl)
- Wertpotential der Inhaltsstoffe übertrifft Wärmeerlöse teilweise mehrfach, keine zusätzlichen Aufschlüsse nötig
- z.Z. analytisches und technologisches Screening (DBU-Projekt)

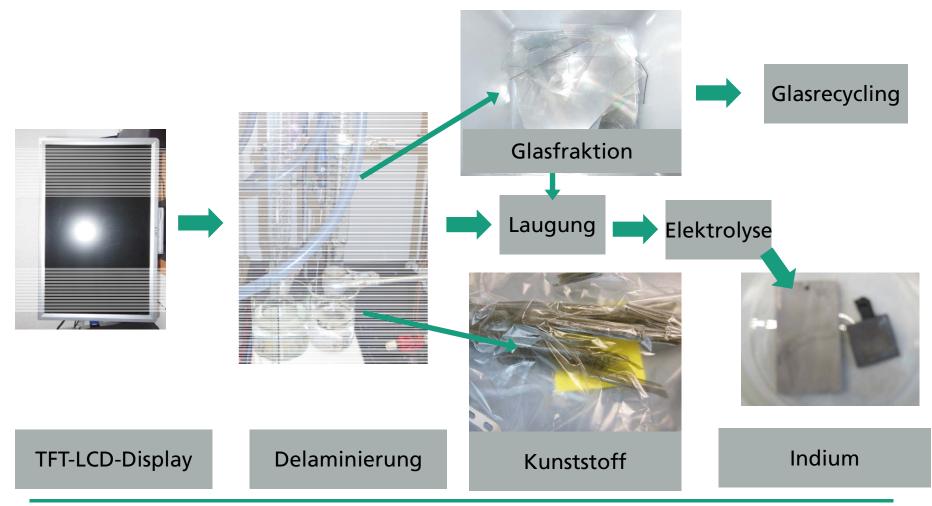

4. Rückgewinnung von Metallen aus Sekundärrohstoffen

4. Rückgewinnung von Metallen aus Sekundärrohstoffen Cerium, Lanthan aus Katalysatoren

4. Rückgewinnung von Metallen aus Sekundärrohstoffen Tellur aus Dünnschichtsolarzellen



4. Rückgewinnung von Metallen aus Sekundärrohstoffen **Indium aus LCD-Displays**



LCD-Displays

Schichtaufbau Display V=140x

4. Rückgewinnung von Metallen aus Sekundärrohstoffen **Indium aus LCD-Displays**

5. Rückgewinnung von Metallen aus Bergbauwässern

Bezeichnung	Ort	Grund- fläche in ha	Höhe über Gelände in m	Halden- volumen in m³
Davidschacht	Freiberg	6,3	22	745.000
Davidschacht/ Hammerberg	Freiberg	5	43	195.000
Isaak	Halsbrücke	3,2	20	230.000
7. Lichtloch	Halsbrücke	9	17	900.000
Münzbachtal	Freiberg	5	25	970.000

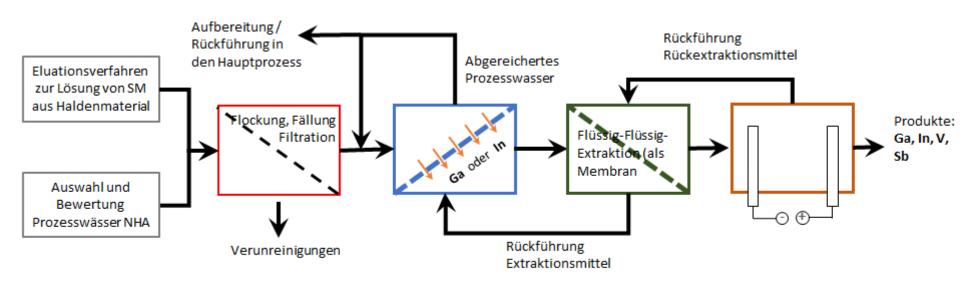
Quelle	Charakteristik	Wertkompo- nenten	geschätztes Potenzial	
alkalische Aufschlusslösungen der Laugung von Scheelit- Armkonzentraten	Aufbereitung von Wolfram- Skarnerzen des Erzgebirges (Pöhla- Globenstein, Antonsthal) führt zu Armkonzentraten (z.B. 4 % W), die hydrometallurgisch aufgearbeitet werden müssen (W, Ca, Na, CO ₃ ²⁻)	Wolfram	1.912 t W/a bei 500.000 t/a Erzförderung mit 0,45 % W und 85 % Ausbringen	
Sickerwässer von Rotschlamm-halden der Aluminiumproduktion (z.B. Raum Lauta)	alkalische Wässer (V, Na, Al)	Vanadium	13 t V im Freiwasser IAA Lauta	
saure Aufschlusslösungen der Lithiumglimmer- verarbeitung	stark saure Lösungen (Li, Ga, K, Rb, Cs, Al, Fe, Si)	Lithium, Gallium, Kalium	ca. 20 t Ga/a bei 1 Mt/a Erzförderung	
Biolaugungslösungen von Zink-Indium-Armerzen oder Zn/In-haltigen Haldenmaterialien	schwach saure Lösungen (Zn, In, Fe, Cd, As, Cu, Pb, SO ₄ ²⁻)	Indium, Zink	ca 3.000 t Zn und ca. 9 t In in Spülhalde Hammerberg	
metallführende Grubenwässer (z.B. Freiberger Bergbaurevier)	schwach saure Lösungen (ca. Zn $1g_{Zn}$ /L, In $1mg_{In}$ /L; Fe, Cd, As, Cu, Pb, SO_4^{2-})	Indium, Zink	31 t Zn/a 31 Kg In /a	

Projekt MExEM

Keramische MembranExtraktionssysteme und adaptierte Elektrochemische Verfahren zur Gewinnung Metallischer Rohstoffe aus niedrigkonzentrierten Lösungen

BMBF-Ausschreibung:

"r4 – Innovative Technologien für Ressourceneffizienz – Forschung zur Bereitstellung wirtschaftsstrategischer Rohstoffe"



Bereitstellung wässrige Konditionierung der Lösungen mit Seltenen Metallen

Lösungen für den Extraktionsschritt Membranextraktion

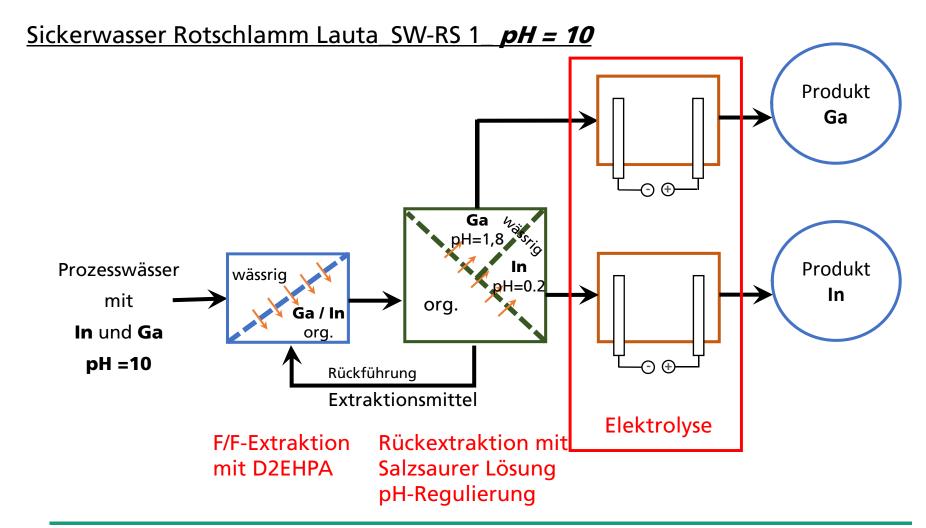
Rückextraktion

Elektrochemische Metallabscheidung

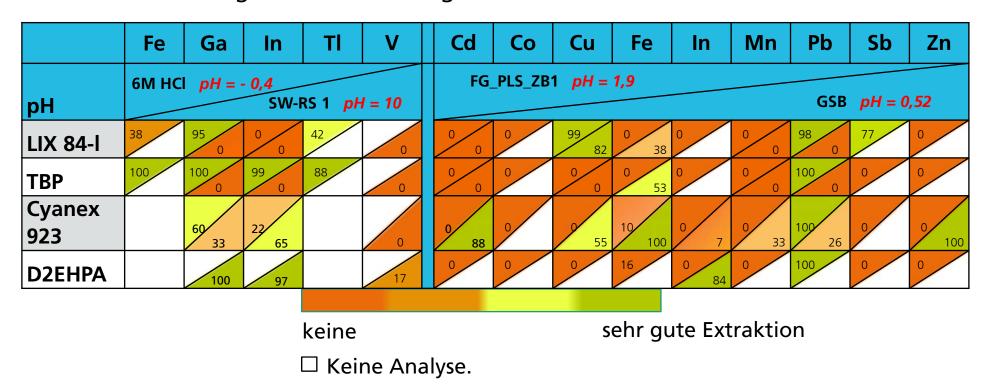
Auswahl, Erprobung und Anpassung geeigneter Extraktionsmittel

zur stoffspezifischen/selektiven Abtrennung der Zielelemente (z.B. In, Ga, Te, Sb, V) aus wässrigen Lösungen mit aggressiven Eigenschaften

Extraktionsmittel	Ziel- komponente	pH- Bedingungen	Sdp. [°C]	Flp. [°C]	Dichte [g/cm³]	Reextraktion- mittel	
Tributylphosphat (TBP)	Ga, In, Tl	stark sauer	289	146	0,97	Acid Solution	
Tri-n-octylphosphinoxid (TOPO)	Ga, In, Tl	stark sauer	212	252	0,88	Acid Solution	
Cyanex 923 (Alkylphosphinoxide)	Ga, In, Tl, Sb, Nb/Ta-Trennung*	stark sauer	310	182	0,88	dest. H ₂ O, *NH ₄ OH/NH ₄ F	
LIX 84-I (Oximbasis)	Ga, In, Tl, Sb	stark sauer	>70	>160	0,89	Acid Solution	
Di-ethylhexylphosphat (D2EHPA)	Ga, Nb/Tl-Trennung	stark sauer/ basisch	48	150	0,97	Acid Solution (HCl,)	
8-Hydroxychinolin	Ga, In, Tl	basisch	267		1,03	Acid Solution (2N HCl, H ₂ SO ₄)	



Auswahl, Erprobung und Anpassung geeigneter Extraktionsmittel


Extraktion von Ga, In, Tl aus salzsaurer Lösung (6M)

Extraktionsmittel	Extraktions beding ungen		Indium		Gallium		Thallium	
	(O/A)=1		<i>E</i> [%]	K	<i>E</i> [%]	K	<i>E</i> [%]	K
TBP/Kerosin_60/40	6M HCl	pH<0, 25 °C, 10 min	99	120	100	124000	88	7,3
LIX-84l/Kerosin_30/70	6M HCl	pH<0, 25 °C, 10 min	k.E.	-	94	17	42	0,7

- → TBP sehr gute Extraktionseigenschaften bzgl. Ga, In, Tl
- → LIX 84-l _ keine Extraktion von Indium
 - → Separation Ga/In
- E ... Extraktionsausbeute [%]; k ... Verteilungskoeffizient

Überblick: bisherigen Extraktions-Ergebnisse

-> Extraktion stark pH-Wert abhängig!

Zusammenfassung

- Keramische Membranen von MF bis NF verfügbar
- Viele Referenzen bis ca. 100 m²/Anlage zur produktionsintegrierten Aufbereitung von Prozesswasser
- Großanwendungen mit > 5.000 m²/Anlage in Pilotierung
- (Membran)extraktion zur selektiven Trennung von Metallsalzen
- Elektrochemische Metallabscheidung
- Projekt MExEM zur Gewinnung von Metallen aus Bergbau-Prozesswässern

Danksagung

