Krystan Marquardt

Übersicht

- **1. Energieversorgung kleiner Systeme**
- 2. Markt und Trends
- 3. Technologie Wafer-Level-Batterie
 - ⇒ Batterieaufbau / Deponierbare Verkapselung durch Polymer-Metall-Dünnfilmverbund
 - \Rightarrow Ergebnisse / Entwicklungsstand
- 4. Zusammenfassung / Ausblick

Übersicht

- 1. Energieversorgung kleiner Systeme
- 2. Markt und Trends
- 3. Technologie Wafer-Level-Batterie
 - ⇒ Batterieaufbau / Deponierbare Verkapselung durch Polymer-Metall-Dünnfilmverbund
 - \Rightarrow Ergebnisse / Entwicklungsstand
- 4. Zusammenfassung / Ausblick

Anwendungen in autarken Systemen

Energieversorgung in kleinen Systemen

Energy density of lithium based secondary batteries

	molar mass	no. of interca- lated Li atoms	level of intercallation	single electrode capacity density		capacity density	energy, density
	[g/mol]			[As/g]	[mAh/g]	[mAh/g]	[mWh/g]
anode Li (metal)	6,9410	1	100%	13900,78	3861,33		
anode Li ₍₀₁₎ C ₆	12,0107	6	100%	1338,88	371,91		
cathode Li _(0.51) CoO ₂	97,8730	1	50%	492,91	136,92	100,1	360,3
anode Li ₍₀₁₎ C ₆	12,0107	6	100%	1338,88	371,91		
cathode Li ₍₀₁₎ CoO ₂	97,8730	1	100%	985,82	273,84	157,7	567,8
anode Li ₍₀₁₎ C ₂	12,0107	2	100%	4016,64	1115,73		
cathode Li _(0.51) CoO ₂	97,8730	1	50%	492,91	136,92	122,0	439,0
anode Li ₍₀₁₎ C ₂	12,0107	2	100%	4016,64	1115,73		
cathode Li ₍₀₁₎ CoO ₂	97,8730	1	100%	985,82	273,84	219,9	791,5
anode Li ₍₀₁₎ C ₆	12,0107	6	100%	1338,88	371,91		
cathode $Li_{(0.51)}Ni_{0.8}Co_{0.2}O_2$	97,6812	1	50%	493,88	137,19	100,2	360,8
anode Li ₍₀₁₎ C ₆	12,0107	6	100%	1338,88	371,91		
cathode $Li_{(0.51)}Mn_2O_4$	180,8147	1	50%	266,81	74,11	61,8	179,2
		I					

³rd LEIBNIZ CONFERENCE OF ADVANCED SCIENCE Krystan Marquardt, 13. Oktober 2006

IZM

* theoretically (max.) values

Überblick Lithium Sekundärbatterie

³rd LEIBNIZ CONFERENCE OF ADVANCED SCIENCE Krystan Marquardt, 13. Oktober 2006

Fraunhofer _{Institut} Zuverlässigkeit und Mikrointegration

Kleine Batterien: Typen

type	advantanges	disadvantages
lithium	 high energy density 	 limited overall thickness
polymer stack	 high power density 	 foil package > 100 μm
		 temperature: < 80 ℃
coin cell	 low cost production 	 low power density
		 medium energy density
wafer level	high energy density	 at present: < 80 °C
wafer level battery	 high energy density flexible battery chemistry 	 at present: < 80 °C medium power density
wafer level battery	 high energy density flexible battery chemistry integrable 	 at present: < 80 °C medium power density
wafer level battery solid state	 high energy density flexible battery chemistry integrable high temperature resistant 	 at present: < 80 °C medium power density low energy density
wafer level battery	 high energy density flexible battery chemistry integrable high temperature resistant very thin 	 at present: < 80 °C medium power density low energy density expensive production

³rd LEIBNIZ CONFERENCE OF ADVANCED SCIENCE Krystan Marquardt, 13. Oktober 2006

IZM

—

Übersicht

- **1. Energieversorgung kleiner Systeme**
- 2. Markt und Trends
- 3. Technologie Wafer-Level-Batterie
 - ⇒ Batterieaufbau / Deponierbare Verkapselung durch Polymer-Metall-Dünnfilmverbund
 - \Rightarrow Ergebnisse / Entwicklungsstand
- 4. Zusammenfassung / Ausblick

Verfügbare Batteriesysteme 700 600 Energy Density (Wh / L) Li/MnO2 - 1980's ~6.5 Devices / Home 500 400 300 Alkaline - 1970's Lilon - 1990's ~6.5 Devices / Home ~17 Devices / Home 200 100 Zn/Carbon – Pre 1960's ~2 Devices / Home 0 0 200 400 600 800 1000

Power Density (W / L)

1200

Energieversorgung autonomer Mikrosysteme

<u>Sicherheitstechnik</u>

Sicherung von Daten auf Chips

Medizinische Anwendungen

Elektronische Mikroimplantate

Patientenmonitoring

Elektronische Pflaster

Hörgeräte

Sensoren

Transponder / Logistik

Autark arbeitende, vernetzte Sensorsysteme

Multifunktionale Chipkarten

Aktive / semiaktive Smart Labels

Low Cost Datenlogger

Autonome Sensorknoten / Messdatenerfassung

RFID Anwendungen, Umsatzentwicklung weltweit

Weltmarkt Batterien im Bereich von 500 µAh bis 10 mAh

Anwendung	Erwartete Stückzahlen			
	Hauptstromversorgung	Notstromversorgung		
Geräte zur Herz-Kreislauf-Stimulation	100.000			
Medizinische Implantate	150.000			
Hörgeräte	20 Mio.			
Medizinische Sensoren	300 Mio.			
Patientenmonitoring, Datenübertragung	5 M	io.		
Transponder zur Produkt- und Tierkennzeichnung	3 Mrd.			
SmartCards	1 Mrd.			
Autoradio, Auto-Navigation	40 Mio.			
Fahrzeugüberwachung, Ortung, Diebstahlsicherung	8 M	io.		
KFZ-Sensoren, Bordcomputer	10 Mio.			
Mp3-Player, portable Unterhaltungselektronik	120 Mio.			
Smartphones, PDA	150	Mio.		
Sportuhren, Lawinenpiepser, Pulsüberwachung	75 Mio.			

Quelle: Abschätzung vom Fraunhofer ICT

berlin

Herausforderung: Energiedichte steigern

kleine Systeme: Großer Anteil passiver Komponenten

Konventionelle Batterieverkapselung

³rd LEIBNIZ CONFERENCE OF ADVANCED SCIENCE Krystan Marquardt, 13. Oktober 2006

IZM Fraunhofer Institut Zuverlässigk

Verkapselung flacher Batterien

Langer Diffusionsweg: Breiter Siegelrand nötig

Versiegelung der gesamten Batterie ohne Siegelrand

Verpackungsfolie 100 µm dick

Dünne, deponierbare Verpackung (3 ... 5 µm)

Kleine Batterien: Verpackung / aktives Material ↑

Anteil aktives Material am Gesamtaufbau ↑

Konventionelle Batterie

³rd LEIBNIZ CONFERENCE OF ADVANCED SCIENCE Krystan Marquardt, 13. Oktober 2006

Wafer Level Batterie

Fraunhofer Institut Zuverlässigkeit und Mikrointegration

Übersicht

- **1. Energieversorgung kleiner Systeme**
- 2. Markt und Trends
- 3. <u>Technologie Wafer-Level-Batterie</u>
 - ⇒ Batterieaufbau / Deponierbare Verkapselung durch Polymer-Metall-Dünnfilmverbund
 - \Rightarrow Ergebnisse / Entwicklungsstand
- 4. Zusammenfassung / Ausblick

Technologie Wafer Level Batterie (Querschnitt)

³rd LEIBNIZ CONFERENCE OF ADVANCED SCIENCE Krystan Marquardt, 13. Oktober 2006

Fraunhofer _{Institut} Zuverlässigkeit und Mikrointegration

IZM

Lamination

Prozessablauf: Verkapselung mit Dünnfilmtechnik

Mikrointegration

Neuer Ansatz: Verkapselung mit Dünnfilmtechnik

Batterielaminate auf FR4, verkapselt

Anoden-Laminat auf SiOx-Wafer

³rd LEIBNIZ CONFERENCE OF ADVANCED SCIENCE Krystan Marquardt, 13. Oktober 2006

Zwischenschritte bei der Lamination

^r Institut Zuverlässigkeit und Mikrointegration

Technologie: Lamination der Batteriematerialien

Wafer-Laminator

³rd LEIBNIZ CONFERENCE OF ADVANCED SCIENCE Krystan Marquardt, 13. Oktober 2006

Lamination:

- Kupfer-Ableiter auf Lithium-Graphit-Anode
- > Separator
- Lithium-Kobaltoxid Kathode auf Aluminium-Ableiter

Prozessparameter:

- Druck
- Temperatur
- Laminationszeit

Batterieaufbau in Handschuhbox: trocken, inert (Argon)

Mikrointegration

Abscheideparameter von Parylene

- Druckbereich: 0,01 ... 0,1 mbar
- ➤ Temperatur: RT
- Abscheiderate: > 50 nm / min
- Gute Reproduzierbarkeit der Schichtdicken
- Sehr homogene Schicht
 Abweichung < 4,5 % bei 2 µm Schichtdicke (4" Wafer)

Barriereeigenschaften von Parylene (Wasserdampf)

³rd LEIBNIZ CONFERENCE OF ADVANCED SCIENCE Krystan Marquardt, 13. Oktober 2006

Fraunhofer Institut Zuverlässigkeit und Mikrointegration

Barriereeigenschaften von Parylene

	Wasseraufnahme	Permeationsrate [g/m²/day @ 100µm]
$\left(CH_2 - CH_2 \right)_n$ Parylene N	< 0,01 %	5,9
$ \begin{pmatrix} CH_2 & CH_2 \\ CH_2 & CH_2 \end{pmatrix}_n $ Parylene C	< 0,06 %	0,83
$ \left(CH_{z} - CH_{z}\right)_{n} $ Parylene D	-	0,98
	< 0,01 %	1,97
Parylene HT		

³rd LEIBNIZ CONFERENCE OF ADVANCED SCIENCE Krystan Marquardt, 13. Oktober 2006

Verkapselung: Wasserpermeation

Scherence of ADVANCED SCIENCE Krystan Marquardt, 13. Oktober 2006

Permeationsraten Wasser und Sauerstoff

thicknes	s [µm]	water		oxygen		
		permeation		permeation		
Parylene C	Aluminium	[g/m²/day]	test conditions	[cm³/m²/day]	test conditions	
4,50 µm	0,00 µm	13,30		180,00		
6,60 µm	0,00 µm	9,00	38°C, 90% RH, faraday	100,00	38°C, 1 bar oxygen	
28,00 µm	0,00 µm	1,80	detektor at MS	28,00	channeltron detector	
			38°C, 90% RH, channeltron			
3,50 µm	1,20 µm	2,00	detektor at MS, before	7,60		
5,90 µm	1,20 µm	0.90	measuring samples ~10 h	>> 10 (invalid)		
9,50 µm	1,20 µm	0,40	at vakuum chamber	100,00		

Anforderung an WLB - Verkapselung: Max. zulässige Wasserpermeation: ~ 0,01 g/m²/day

Ursache für hohe Permeation: Löcher in Metallschicht (Pin Holes)

Abhilfe: Partikelfreie Abscheidung des Parylene - Films

Parylene: Gute Kanten- und Grabenabdeckung

³rd LEIBNIZ CONFERENCE OF ADVANCED SCIENCE Krystan Marquardt, 13. Oktober 2006

Fraunhofer _{Institut} Zuverlässigkeit und Mikrointegration

Strukturierbarkeit von Parylene

⇒ Schattenmasken (Edelstahl) zur Strukturierung

³rd LEIBNIZ CONFERENCE OF ADVANCED SCIENCE Krystan Marquardt, 13. Oktober 2006

Fraunhofer _{Institut} Zuverlässigkeit und Mikrointegration

Chemischen Stabilität von Parylene

Versuche:

- Chlorhaltiges Parylen auf Kalzium Spiegel
 - Nach 15 Wochen kein Abbau von Kalzium unter Argonatmosphäre
- Auslagerung von Parylene C in Elektrolyt (1M LiPF6 in EC/DEC) bei RT

→ keine Degradation nach 28 Tagen

Verkapselung von Batterielaminaten:

- \Rightarrow Keine Wechselwirkung des Parylens mit Batteriematerialien
- \Rightarrow Batterieperformance nicht eingeschränkt

Dünnfilmverkapselung für Batterien

Hermetischer Polymer-Metall-Verbund Dünnfilmtechnik

Abscheidung:

kalt (< 50°C), trocken, aus der Gasphase

Polymer: Strukturierbar (RIE), geringe Wasseraufnahme, gute Barriere gegenüber H₂O / O₂

Herausforderung: Risse / Pin holes ⇒ staubarme Umgebung / Laminarflowbox

Reproduzierbarkeit

³rd LEIBNIZ CONFERENCE OF ADVANCED SCIENCE Krystan Marquardt, 13. Oktober 2006

IZM Fraunhofer Institut Zuverlässigkeit und Mikrointegration

Einfluss des Elektrolytverlustes auf die Kapazität

Extraktionsoptimierung

formation of laminated µcells, different extraction parameters

Zyklenstabilität

Übersicht

- **1. Energieversorgung kleiner Systeme**
- 2. Markt und Trends
- 3. Technologie Wafer-Level-Batterie
 - ⇒ Batterieaufbau / Deponierbare Verkapselung durch Polymer-Metall-Dünnfilmverbund
 - \Rightarrow Ergebnisse / Entwicklungsstand
- 4. Zusammenfassung / Ausblick

Rechargeable lithium micro batteries

Zusammenfassung: Verkapselungskonzept WLB

- 1. Preiswerteste Herstellung ultraflacher Sekundärbatterien
- 2. Weltweit *höchste Energiedichte* flacher Batterien wegen dünner Verkapselungsschicht und Siegelrandfreiheit
- 3. Erhebliches *Miniaturisierung*spotenzial, freier Formfaktor in der Ebene
- 4. Direkte Ankontaktierbarkeit an Chips: Integrierbarkeit
- 5. Verkapselungstechnologie ist unabhängig von den verwendeten Aktivmaterialien ⇒ Sofort neue Elektrodensysteme verwendbar

17M

Danke für Ihre Aufmerksamkeit

