3rd LEIBNIZ CONFERENCE OF ADVANCED SCIENCE

Neue Konzepte für Bauteil- und Materialüberwachung in der Verkehrstechnik, speziell Bahn und Flugzeug

Norbert Meyendorf

Fraunhofer Institute for Non-Destructive Testing, Dresden branch (IZFP-D)

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

3rd LEIBNIZ CONFERENCE OF ADVANCED SCIENCE

Neue Konzepte für Bauteil- und Materialüberwachung in der Verkehrstechnik, speziell Bahn und Flugzeug

Outline

- The dawn of a new technology age
- Progress in science and technology for SHM
- SHM A new discipline in technology
- Attempt of a prognosis

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

We are at the dawn of a new technology age

Institut Zerstörungsfreie Prüfverfahren

Why SHM now?

The ultimate goal

Building smart systems that are sensitive to their environment and

their "health" situation and can adapt to this situation.

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Why SHM now?

The increasing memory power and processor speed allow making systems small and light weight Reducing energy consumption allows making systems energy independent Falling prices allow multiplying of systems Wireless communications allows establishing affordable "intelligent" sensor networks International networking of scientists allows using most advanced technologies and resources.

Miniaturization of Electronics

Conventional acoustic data recording and analyzing system 4 Channel acoustic system today

→ Match-X-Module

CPCI system with modules for signal recording and analysis

Network nodes based on FR4 technology

Network nodes based on AI_2O_3 technology

IZFF

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Resources for Structural Health Monitoring: Nondestructive Evaluation

Benefits of SHM

- Accelerated structure tests
- Reduced maintenance cycles
- Reduced maintenance time
- Higher availability of systems
- Condition based maintenance
- Increased safety and reliability
- Extended use of systems within lifetime
- Maintenance of systems retail value
- Extended lifetime (if in time repair)
- Optimized design (if SHM is incorporated in design rules)
- Reduced weight and lower energy consumption

3rd LEIBNIZ CONFERENCE OF ADVANCED SCIENCE

Neue Konzepte für Bauteil- und Materialüberwachung in der Verkehrstechnik, speziell Bahn und Flugzeug

Outline

- The dawn of a new technology age
- Progress in science and technology for SHM
- SHM A new discipline in technology
- Attempt of a prognosis

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Progress in science and technology for SHM

Advanced sensor and NDE principles

Advanced electronics

Advanced data acquisition and processing techniques

Embedded sensors

Distributed sensor systems and sensor networks

Telemetric systems

New concepts for power supply

Monitoring of complex structures

Advanced Electronics

The Roadmap for Semiconductor Industries

IZFP

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Advanced Electronics (AVT)

eGrain – Roadmaps IZM

Advanced Electronics (AVT)

Nondestructive Evaluation: Sampling Phased Array Platform

16-channel system, prototype

New 16-channel ultrasonic electronics µ-USE

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Advanced Electronics (AVT)

Miniaturized Ultrasound Hardware

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Progress in science and technology for SHM

Advanced sensor and NDE principles

Advanced electronics

Advanced data acquisition and processing techniques

Embedded sensors

Distributed sensor systems and sensor networks

Telemetric systems

New concepts for power supply

Monitoring of complex structures

Phased Array Principle enables directing and focusing of sound fields

Fraunhofer _{Institut} Zerstörungsfreie Prüfverfahren

Phased Array Probe and Sound Field Modeling

Page 17

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

IZFP

Instrumentation CFRP-Panels

Experimentally determined, angle dependent group velocity required for damage localization

Time of Flight Tomography

Fraunhofer _{Institut} Zerstörungsfreie Prüfverfahren

Progress in science and technology for SHM

Advanced sensor and NDE principles

Advanced electronics

Advanced data acquisition and processing techniques

Embedded sensors

Distributed sensor systems and sensor networks

Telemetric systems

New concepts for power supply

Monitoring of complex structures

Embedded Sensors

Sensors based on PZT fibers

Mode selective signal detection

PZT fiber sensors integrated in the structure for impact detection

Fraunhofer LBF

Fraunhofer _{Institut} Zerstörungsfreie Prüfverfahren

Embedded Sensors

Simulation of ultrasound excitation by PZT fiber transducers

200 x 200 x 1.5 mm³ Al plate

15 x 20 mm² fiber sensor

fibers vertically

exciting frequency: 300 kHz

absolute value of the vector of particle velocity

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Numerical simulation of symmetric Lamb wave propagation in a free fiber module caused by driving of one electrode pair

Displacement u_y at x = 2.5 cm

Wavefront snapshots

Advanced sensor and NDE principles

Advanced electronics

Advanced data acquisition and processing techniques

Embedded sensors

Distributed sensor systems and sensor networks

Telemetric systems

New concepts for power supply

Monitoring of complex structures

Embedded Sensors

Sensor Node

Fraunhofer _{Institut} Zerstörungsfreie Prüfverfahren

Embedded Sensors

Self Assembling Sensor Networks

- Data on demand / data in case of need
- Inter-sensor communication
 - Networked sensors
 - Integrity of the values (plausibility checks)
 - Bypassing/virtual replacement
 of defect sensors
 - Need of small transmission
 power

sino,

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Advanced sensor and NDE principles

Advanced electronics

Advanced data acquisition and processing techniques

Embedded sensors

Distributed sensor systems and sensor networks

→ Telemetric systems

New concepts for power supply

Monitoring of complex structures

Advanced sensor and NDE principles

Advanced electronics

Advanced data acquisition and processing techniques

Embedded sensors

Distributed sensor systems and sensor networks

Telemetric systems

New concepts for power supply

Monitoring of complex structures

New Concepts for Power Supply

Power Supply

Thermo-generators (Fa. Micropelt / FhG IPM)

Solar cells Solarwatt, Q-Cells

Inductive generators (Fa. pro-micron)

Piezoelectric generators (Fa. EnOcean / Siemens / FhG IKTS)

Kinetic generators

(Research Institute for Microsystem Technology, Ritsumeikan University)

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

IZFP

Advanced sensor and NDE principles

Advanced electronics

Advanced data acquisition and processing techniques

Embedded sensors

Distributed sensor systems and sensor networks

Telemetric systems

New concepts for power supply

Monitoring of complex structures

Airbus A380 Full Scale Fatigue Test

IABG mbH

Aircraft Structure Tests

Dipl.-Ing. Felix Schwarberg

Zum Windkanal 17

01109 Dresden, Germany

Instrumentation of Impact Test

Test is performed in Madrid (Spain) Experiments are controlled from Dresden online via Internet

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Modeling of Lambwave / defect interaction to interpret signals

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

NDE in Aviation

- Aloha Airlines flight
- corrosion damage led to widespread fatigue failure

Monitoring of Complex Structures: IGC vs. Environment

AA7178 wingskin

Electrochemical treatment in NaCl solution at anodic potential.

Selective grain attack.

High humidity exposure after electrochemical pretreatment.

Sharp IGC fissures.

AA7075 plate

Worldwide Outdoor Exposure Testing for Environmental Severity

Fraunhofer _{Institut} Zerstörungsfreie Prüfverfahren

Evaluation of Corrosion Thinning in AA2024-T3 Lap Joint Structures - Verification of MAUS IV Eddy Current Measurements

MAUS EC f_A = 6 kHz Thickness loss both layers

MAUS UT f_A = 10 MHz time-of-flight top layer

Worldwide Outdoor Exposure Testing for Environmental Severity

Long-term health monitoring objective

Sensor coverage of critical areas

Growing need for a collective repository for sensor data

Courtesy S&K Technology Dayton, OH

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Time frame for SHM implementation from Airbus Industries

SHM 1st Generation (local systems:

<u>Benefit</u>: Maintenance costs / Human factor reduction
 <u>Characteristic</u>: Surface sensors / Alternative to conv. NDI (retrofit) / Local monitoring.

SHM 2nd Generation

•<u>Benefit:</u> +Weight Saving on component level Increased aircraft availability (postpone repairs/maintenance)

•<u>Characteristic:</u> On-line system Allows new design philosophy

SHM 3rd Generation

Courtesy Speckmann Airbus •<u>Benefit:</u> ++Global Weight Saving (incl. snowballs) Increased residual aircraft value Optimisation of system components positioning

2008

2013

2018

•<u>Characteristic:</u> Fully integrated On-line system Allows new design philosophy

Technology Readiness Timescale

G AIRBUS

Application: Railroad

Source: The Guardian

October 17th, 2000 Accident at Hatfield Station

4 passengers killed, 34 passengers with severe injuries

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Cause: Crack in wheel set

Application: Railroad

High speed train accident in Eschede 101 people died

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Application: Railroad

Fraunhofer _{Institut} Zerstörungsfreie Prüfverfahren

Condition Monitoring

In-motion inspection of the running surface of railway wheels by Rayleigh waves using EMAT's and Guided Waves

Condition Monitoring

In-motion inspection of the running surface of railway wheels by Rayleigh waves using EMAT's and Guided Waves

Train moving along the probes

Probe 1

2000

1500-

1000-

500-

500

A-Scans of each of the four probes

Probe 4

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Application: Railroad, Health Monitoring

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

IZEE

Application: Railroad, Health Monitoring

Modeling helps to understand wave generation and propagation as part of the sensing principle

Page 49

IZFF

Application: Railroad, Health Monitoring

Smart Sensor, ready for assembly into the shaft

- Sensing Element
- Trigger Module
- Signal Processing Module
- Power Module
- Telemetry Module

Roadmap for Continuous Monitoring of High Speed Trains

IZFE

Zerstörungsfreie Prüfverfahren

Fraunhofer Institut

3rd LEIBNIZ CONFERENCE OF ADVANCED SCIENCE

Neue Konzepte für Bauteil- und Materialüberwachung in der Verkehrstechnik, speziell Bahn und Flugzeug

Outline

- The dawn of a new technology age
- Progress in science and technology for SHM
- SHM A new discipline in technology
- Attempt of a prognosis

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Resources for Structural Health Monitoring: Sensor Technology

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Resources for Structural Health Monitoring: Sensor Technology

Sensor systems with integrated electronics

Integrated 40dB preamplifier FKSE01B

Impact detection system based on Match-X standard CAN-Bus network

Resources for Structural Health Monitoring: Sensor Technology X-ray Imaging

Resources for Structural Health Monitoring: Sensor Technology

To be measured	Sensor principles	Transformatio	n of chemical and tities into electric
 Temperature El./Magnetic fields and radiation Pressure, Force, Vibration, Acceleration Voltage, Current Chem. Composition Damage Processes (corrosion) 	 Resistance/ Conduct. Piezoelectricity Thermoelectric effect Electric induction Photoelectric effect Spectroscopy El. /mag. noise 	Monitoring of loading condition Distances and Environmental Active degrada	ons locations parameters tion processes

Recent Trends: Intelligent sensors with incorporated signal analysis, date storage and power management Multi-sensors and sensor networks Self calibration and self diagnosis Miniaturization and energy independence	Recent Trends:
---	----------------

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

3rd LEIBNIZ CONFERENCE OF ADVANCED SCIENCE

Neue Konzepte für Bauteil- und Materialüberwachung in der Verkehrstechnik, speziell Bahn und Flugzeug

Outline

- The dawn of a new technology age
- Progress in science and technology for SHM
- SHM A new discipline in technology
- Attempt of a prognosis

Fraunhofer Institut Zerstörungsfreie Prüfverfahren

Attempt of a Prognosis Technology

Prüfverfahren

Attempt of a Prognosis Management

2nd Dresden Airport Seminar Reliability, Testing, Monitoring of Aerospace Components

November 15, 2006 www.izfp-d.fraunhofer.de

Invited papers will be presented by

Dr. George Y. **Baaklini**, Chief, Optical Instrumentation and NDE Branch, NASA Glenn Research Center, USA

Theo Hack, EADS, Germany

Prof. Xiaoyan **Han**, Department of Electrical and Computer Engineering, Wayne State University, USA

Dr. Henrik Rösner, Airbus, Germany

Felix **Schwarberg**, IABG Industrieanlagen-Betriebsgesellschaft mbH, Germany

Dr. Paul Wilcox, University of Bristol, UK

Location: Airport Dresden, Terminal 2