


## Fühlende RFIDs

Neue Ansätze zur RFID-basierten Sensorik

#### Dr. Jürgen Wöllenstein

Fraunhofer Institut Physikalische Messtechnik, Freiburg 16. Oktober 2008

7. Leibniz-Konferenz "Sensorsysteme"





## Fraunhofer Institute Physical Measurement Techniques **IPM** 2006

history

1963 working group for physical space research

Fh-Institute for Physical Space Research IPW

1980 Fraunhofer Institute for

Physical Measurement Techniques IPM

staff

150 staff (100 regular, 50 students, guests, etc.)

budget

11.5 m

funding

3.8 m basic funding

7.7 m contracted r+d

(5.8 m , 51% industrial)



# Geschäftsbereich Integrierte Sensorsysteme Fraunhofer IPM

Fühlende RFIDs

Luftqualität gezielt steuern

Schnell modulierbare IR-Emitter

Sensoren überwachen den Reifeprozess von Obst

Portables GC-Messsystem

- Funktetiketten mit Sensorik überwachen Ihre Güter
- Sensor misst Gase, Luftfeuchte und Temperatur gleichzeitig
- für den Wellenlängenbereich von 5µm bis 12µm
- kompaktes optisches Ethylen Monitoring Messsystem
- Detektion von flüchtigen organischen Verbindungen im sub ppb-Bereich

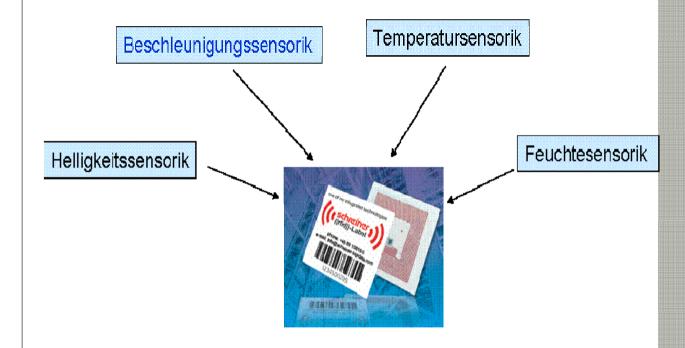










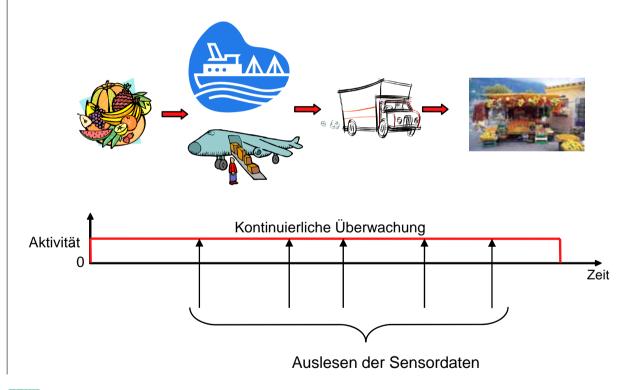







## TRACK: Traceability: Rückverfolgbarkeit durch Autonome Mikrosysteme zum kontinuierlichen Check von Konsumgütern

Fühlende RFIDs

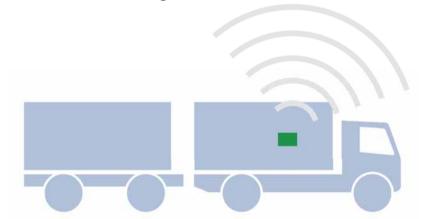





Integration von Sensoren auf RFID-Tags zur lückenlosen Überwachung von Logistikketten

## Motivation Fühlende RFIDs

- Lebensmittellogistik:
- ⇒ Überwachung von Temperatur, Licht, Gasen mit RFIDbasierter Sensorik



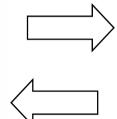


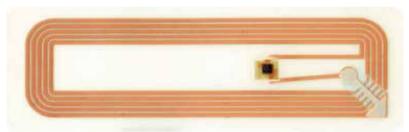

#### Integration von Sensoren auf RFID-Tags zur lückenlosen Überwachung von Logistikketten

## Motivation Fühlende RFIDs

- Automobilindustrie:
- ⇒ Feuchteüberwachung (Korrosion)
- Flugzeug-/Luftfracht:
- ⇒ Integritätskontrolle von Containern mittels Beschleunigungsund Helligkeitssensorik sowie Einbindung von RFID-Systemen
- Pharmaindustrie:
- ⇒ Überwachung der Kühlkette







## RFID (Radio frequency identification) Fühlende RFIDs

Reader

Transponder-Tag







"erweiterter Barcode"

passive RFID-Tags

aktive RFID-Tags

semi-aktive RFID-Tags

- Energieversorgung allein über elektrisches Feld
- Batterie auf Transponder-Tag ⇒ höhere Reichweite
- Batterie auf Transponder-Tag nur für Sensorik



## Frequenzbänder für RFID Fühlende RFIDs

LF

um 125 kHz

Standard bei Zugangssystemen und Tieridentifikation

Vorteil: kostengünstige passive Systeme

wenig störanfällig bei Anwesenheit Metall / Wasser

Nachteil: sehr kurze Reichweite (~ 5 - 10 cm)

geringe Datenübertragungsraten (64 bit/s)

ight ausreichend für Sensorik

HF

13,56 MHz

Standard bei RFID in Logistik

Vorteil: Reichweite (10 cm: ISO 14443, bis 1 m: ISO 15693)

kostengünstiger als 125 kHz

mittlere Datenübertragungsraten

Nachteil: Störungen durch Metall / Reflexionen

- ⇒ Datenrate für Sensorik 106 kbit/s
- ⇒ Batterie auf Transponder-Tag nur für Sensorik



## Frequenzbänder für RFID Fühlende RFIDs

UHF

860 - 868 MHz

Vorteil: Reichweite (Fernfeldauslesung)

passiv: 7 m, aktiv: 100 m

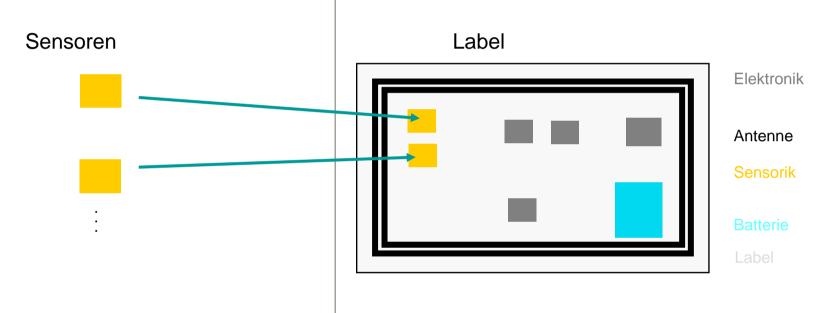
Datenübertragungsraten 64 kbit/s

Nachteil: teuer

Leistungsübertragung ~ 100 mW

störanfällig durch Interferenzen (v. a. bei mehreren

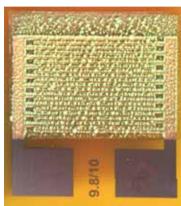
Readersystemen) und Metall / Reflexionen

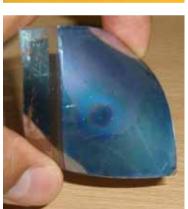

Frequenzbänder international nicht einheitlich

vergeben



#### Konzept Fühlende RFIDs


semi-aktive Multi-Chip-Lösung

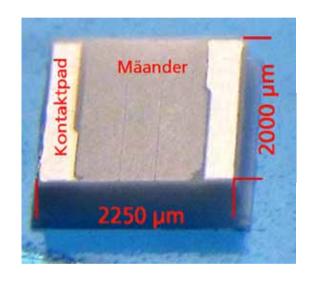



- Entwicklung und Integration von "low cost" und "low power"
   Sensoren
- Entwicklung eines semi-aktiven Multisensor-Labels auf flexiblem Substrat



#### Konzept Fühlende RFIDs

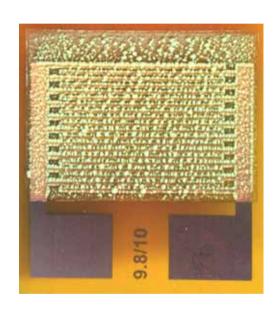





Entwicklung von RFID-basierte Sensorik
 Temperatursensorik
 Feuchtesensorik
 Lichtsensorik
 Integritätssensorik
 (Gas)

Anforderung
 extrem niedriger Leistungsverbrauch
 flexibel
 ISO Standard 15693




#### Temperatursensorik Fühlende RFIDs



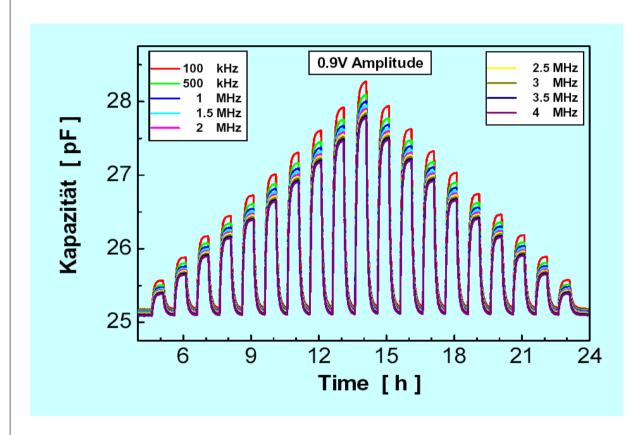
- Messung der Widerstandsänderung
- Variation von Strukturbreite, Strukturierung, Schichtdicke, Passivierung
- kostengünstige Dünnschicht-Technologie auf Al<sub>2</sub>O<sub>3</sub>-Substraten
- ⇒ Pt 10.000 auf 5 mm<sup>2</sup>



#### Feuchtesensorik Fühlende RFIDs



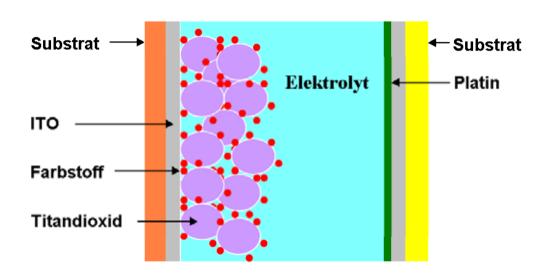
- kapazitiver Feuchtesensor
- Elektroden aus Antennenmaterial
- druckbare, feuchtesensitive Polymere: CA, CAB, PMMA, PUR, PVP usw.
- Technologie: spin coating, Aufsprühen, Siebdruck
- ⇒ kapazitiver Feuchtesensor auf flexiblem RFID-Substrat

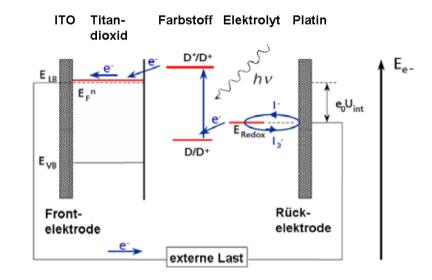



#### Feuchtesensorik Fühlende RFIDs

Substrat: PI-Folie ohne Beschichtung

Feuchtetreppe von 0 bis 90% relative Feuchte



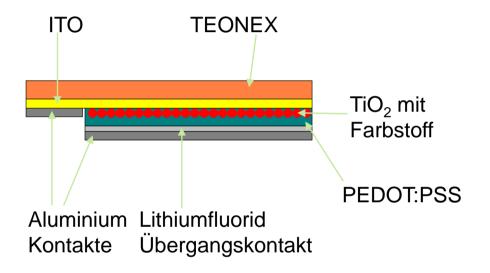



#### Lichtsensorik Fühlende RFIDs

Prinzip der Farbstoffsolarzelle






prinzipieller Aufbau



**Energieschema** 

#### Lichtsensorik Fühlende RFIDs

Lichtsensor aus Teonex mit Polymerelektrolyt



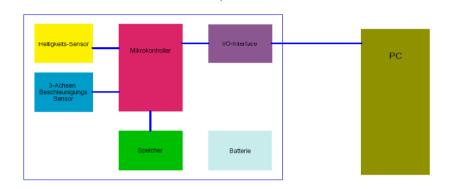



Spannung bei voller Sonneneinstrahlung ca. 500mV

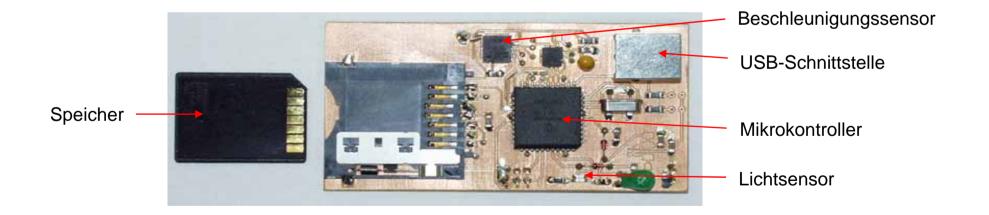


### Integritätssensorik Fühlende RFIDs

Integritätskontrolle von Container mittels Beschleunigungs- und Helligkeitssensorik



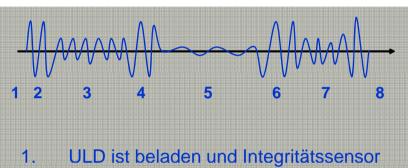




Unit Load Device, ULD



#### Integritätssensorik Fühlende RFIDs




- Mikrocontroller
- Speicherkarte
- 3-Achsen-Beschleunigungssensor
- Lichtsensor
- USB-Schnittstelle
- Virtual Basic Add-On für MS-Excel





#### Integritätssensorik Fühlende RFIDs

Überwachung eines beladenen ULDs auf dem Flughafenvorfeld



- wird initialisiert
- 2. ULD wird umgesetzt
- 3. Transportphase
- 4. ULD wird abgesetzt
- 5. Ruhephase mit "Störungen"
- 6. ULD wird umgesetzt
- 7. Transportphase
- 8. Verladung, Integritätssensor wird ausgelesen



- z.B. kurzzeitige Störung in der Ruhephase
- d.h. Betrachtung der Unterschiede zw.

Missbrauch und Störung

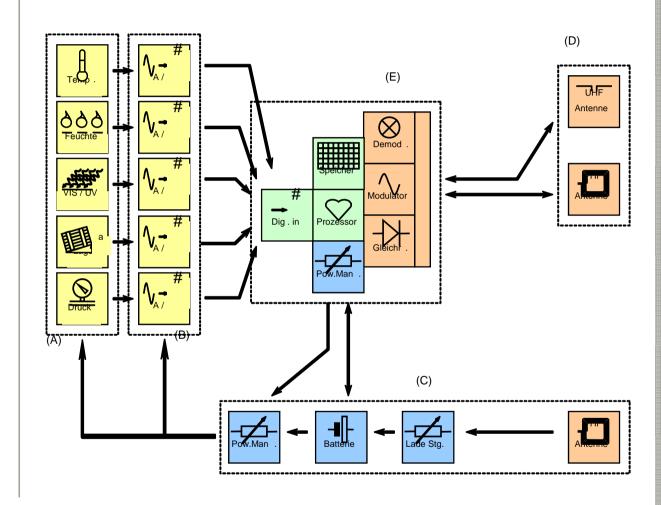
- Störungen
  - vorbeifahrende Fahrzeuge
  - startende/landende Flugzeuge

- ...

Analyse der Signalmuster



# semi-aktives Multisensor-Label Fühlende RFIDs


schematischer Aufbau

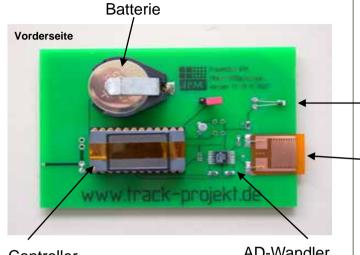
(A): Analoge Signale (B): Digitalisierer

(C): Energieversorgung

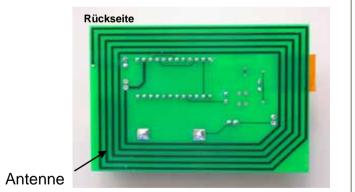
(D): Antenne

(E): RFID-Chip






#### Prototyp eines RFID-Tags Fühlende RFIDs


RFID-Tag mit integrierter Feuchte- und Temperatursensorik

Temperatursensor Pt10.000

Feuchtesensor



**AD-Wandler** Controller

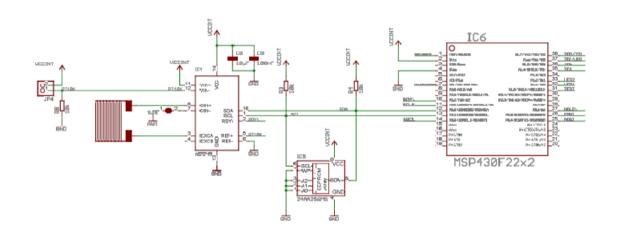


- 13,56 MHz RFID-Standard
- semi-aktives Label
- interne Spannungsversorgung für Messwerterfassung
- passives Auslesen



#### Preise von RFID-Tags Fühlende RFIDs

0,05€ Zielpreis für RFID im Bereich Logistik (in Si) 0.20 € aktueller Preis für passive Label bei Stk. > 1 Mio. 1.00 € bei Stk. > 1000 druckbare RFID-Label (Info aus RFID-im-Blick, 03/08) 0.20 € 0,80 - 1,00 € RFID integriert in Pool-Kisten 5 - 10 € mit Batterie (z. B. für Blutkonserven) 2 € **SOLL für RFID inkl. Feuchte- und Temperatursensor** RFID in Standardgehäuse (Pepperl und Fuchs), 8€ Werkzeugtransportboxen (125 kHz) RFID-basierte Sensoren (Stückzahl ca. 1000) 50 €

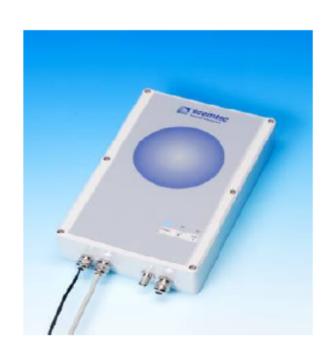



# scem\_TAG\_IS015593 RFID-SEVSOR



# Prototyp eines RFID-Tags Fühlende RFIDs

RFID-Tag mit integrierter Feuchte- und Temperatursensorik




13,56 MHz RFID-Standard ISO15693 Sensortransponder



# RFID-Reader Fühlende RFIDs

## Stationäre RFID "TRACK" Reader:



#### 13.56 MHz Industrial Midrange Reader / Writer SIR-2610

- -) 13,56 MHz RFID reader/writer for industrial mid range applications
- -) reading/writing of 13,56 MHz ISO15693 and ISO18000-3 labels or transponders
- reading distance up to 35 cm with integrated antenna and use of an RFID card/label of ISO-card size
- -) conection of an external antenna is possible
- anticollision: simultaneous reading/writing of many labels/transponders in the antenna field
- -) internal jumper for tuning of the internal antenna to "metal environment"
- internal jumper for tuning of the internal antenna to "metal environment"
- -) CE and radio approval

M.Sohmidt

© Konsortium Verbundprojekt TRACK



# Antennen Fühlende RFIDs

## Antennen und Zubehör für stationäre TRACK Reader:



Alle 50 Ω Antennen von scemtec grundsätzlich anschließbar und innerhalb des TRACK Projektes für Sensor Transponder verwendbar, soweit ISO 15693 kompatibel









M.Schmidt Konsortium Verbundprojekt TRACK



# Vorderseite www.frack-projekt.de



## Zusammenfassung Fühlende RFIDs

Ziel von Track: Integration von Sensoren auf RFID-Tags Überwachung von Logistikketten in den Bereichen Pharma, Automotive und Luftfracht

Feuchtesensoren auf flexiblen Substrat

Mikrostrukturierte " low power" Pt-Temperatursensoren

Lichtsensoren auf flexiblen Substraten

Demonstrator: Integritätskontrolle von Container mittels Beschleunigungs- und Helligkeitssensorik

Demonstrator: RFID-Tag mit Feuchte- und Temperatursensorik

**Feldtests** 



#### Vielen Dank Fühlende RFIDs

#### .. dem BMBF

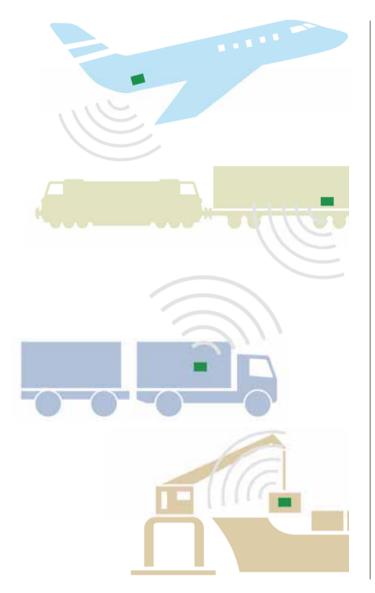
für die finanzielle Unterstützung des Projekts TRACK

.. den Projektpartnern














www.track-projekt.de





## Vielen Dank für Ihre Aufmerksamkeit!

#### Dr. Jürgen Wöllenstein

Fraunhofer IPM

16. Oktober 2008

7. Leibniz-Konferenz "Sensorsysteme"

