

Structural Health Monitoring of Fiber Reinforced Plastics

Strukturüberwachung von Faserkunststoffverbunden

A. Nocke, E. Haentzsche, G. Bardl, Ch. Cherif

Institute of Textile Machinery and High Performance Material Technology, Technische Universität Dresden

Sensorsysteme 2014, Lichtenwalde

und Kultu

Outline

- 1. Initial Situation & Motivation
- 2. Goals & Approach
- 3. Results

I. Functional model 1 - Textile membrane for biogas storage facilities

II. Functional model 2 - FRP wind turbine blade

4. Conclusions & Outlook

1. Initial Situation & Motivation

2. Goals & Approach

- Long-term stable structuremonitoring and damage detection for FRP's
- Textile-technological realization of tailored & structure-compatible sensor networks
- Cost- and time effective usage of textile-technological fabric generating techniques
- Integration of piezo-resistive materials during textile fabric's production (multiaxial weaving and warp knitting)

2. Goals & Approach

> Strain measurement principle

Piezo-resistive effect of CF by mechanical straining; geometry change causes change in resistance

exPAN CF-Roving Toho Tenax[®]-J HTA40 1k 67 tex 15S

2. Goals & Approach

Factors of influence on the sensory characteristics:

HAENTZSCHE et. al.: "Characteristics of CF-based strain sensors for SHM...". In: Sensors and Actuators A: Physical A203(2013)1, pp. 189-203

Overview Functional models

Membrane for biogas storage facilities FRP

Multiaxial weaving with ORW[®] technology & warp yarn shogging

Multiaxial warp knitting with warp yarn shogging device

Functional model 1 (FUM1)

Functional model 2 (FUM2)

3. Results (FUM1)

3.1 Specification of textile reinforced membranes for biogas storage facilites

- Basic structure: single-layer woven fabric
- Dimensioning of sensor structure: 2D layouts with reachable basic resistances
 R₀ = (100...1000) Ω
- Usage of CF as warp & weft yarns and for additional warp yarn shogging
- CF trassing in 0° direction to serial interface on membrane's geometrical periphery

3. Results (FUM1)

3.2 Sensor integration by weaving with ORW® technology

- Multiple warp yarn shogging device
- Lateral move = ± 150 mm working width = 1,035 mm
- Basic fabric: 1.400 x PES
 1.100 dtex, plain weave
 warp/weft density: 10/9 cm⁻¹
- Sensor material: CF 1k; 67 tex

Detail A: linear drive unit with needle bar and Open Reed Weave (ORW®)

Detail B: needle bar with CFY in open shed position

3. Results (FUM1)

3.3 Manufacturing of membranes with integrated CF sensors

- ➢ Woven fabric 200x200 mm²,
- > Meandering CF sensors with $R_0 \approx 700 \Omega$
- Hand lamination with 2C silicone rubber
- > 2-layer laminat $[-90^{\circ}_{CF}, 0^{\circ}, 90^{\circ}]_2$ with 2 meanders in 0°/90° direction

3. Results (FUM1)

3.4 Sensor behaviour during cyclical in-plane shear stressing

Overview Functional models

3. Results (FUM2)

3.5 Specification of textile reinforced small wind turbine blade

- Design and composite construction of small wind turbine blade
- Half shell segments with tension and compression flanges (no main beam)
- Accumulated strain measurement along integrated CF sensor's length

3. Results (FUM2)

3.6 Adaption multiaxial warp knitting technique for 2D sensor integration

> Patended warp yarn shogging device for multiaxial warp knitting machines

3. Results (FUM2)

3.7 Final assembly of small wind turbine blade

3. Results (FUM2)

3.8 Rotor resistance change under constant loading

4. Conclusion & Outlook

- Realization of 2 functional FRP models: wind turbine blade and membrane with integrated CF sensors for SHM
- Good correlation between mechanical stress and measured change in resistance
- > Outlook: Measurements under biaxial and dynamic loading scenarios

Structural Health Monitoring of Fiber Reinforced Plastics

5. Appropriation of funds

The IGF project 17529BR/1 of the Forschungsvereinigung Forschungskuratorium Textil e. V is funded through the AiF within the program for supporting the "Industriellen Gemeinschaftsforschung (IGF)" from funds of the Federal Ministry of Economics and Energy (BMWi) by a resolution of the German Bundestag.

The ITM would like to thank all the mentioned institutions for providing funds.

Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

6. Acknowledgment

We would like to thank all members of the committee accompanying the project IGF17529BR/1 for their technical support and the provision of test materials.

Last but not least, many thanks to all of our colleagues and students (Mr. *cand. Ing.* Ralf Müller) for their support within the context of our research in this application area.

Fakultät Maschinenwesen Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik, Professur für Textiltechnik

MULTIFUNCTIONAL FIBER-REINFORCED PLASTICS WITH INTEGRATED TEXTILE-BASED SENSOR AND ACTUATOR NETWORKS

