

Locating and supervising relief forces in buildings without the use of infrastructure

Tracking of position with low-cost inertial sensors

HSG-IMIT

Key data (2013)

- Place of business: Villingen-Schwenningen, Freiburg
- Staff: 120 FTE
- Budget: 13,3 M€

Business areas

- Sensors & Systems
- Microfluidics
- Prototyping & Production
- Lab-on-a-Chip

Quality management

DIN EN ISO 9001:2008 certified
 Martin Trächtler – 17.10.2014 – 18th Leibniz Conference of advanced science

HSG-IMIT: Inertial Sensor Systems

3

Motivation

Challenges of the (Indoor)-Localization

- Absence of GPS signals in houses, woods, between high rows of houses,...
- No area-wide infrastructure of triangulation technologies
 - > WLAN
 - ≻ GSM
 - Bluetooth
- Lighting conditions, reflections, textures, resolution limits of optical methods
 - > 2D, 3D-cameras (passive methods)
 - Depth-sensors (active methods mutual interferences)
 - Laser

4

Motivation

Challenges of the (Indoor)-Localization

- Environmental interferences by using acoustic methods
 - > Microphone array
 - Ultrasonic sound
- Requirements regarding size, weight and costs
- → Inertial Navigation !

Inertial Navigation - Theory

Inertial Sensors measure relative movements

- MEMS-Accelerometer
 - > Small, cheap, low power
 - > measures the acceleration of a body
- MEMS-Gyroscope
 - > Small, close to cheap, close to low power
 - > measures the angular rate of a body

NICE

(HSG-IMIT

Inertial Navigation - Theory

Inertial Sensors measure relative movements

- Simple integration of angular rate
 - > orientation of an object
- Double integration of acceleration
 - > position of an object
- No external system needed

PROBLEM SOLVED! ... so far the theory...

(HSG-IMIT

Inertial Navigation – Practice

- with very (!) expensive and large sensor systems over a limited time
 - FOG, RLG, mechanical gyros → hours (used in planes, satellites, rockets, missiles,...)

It does not work

- with low cost sensors, especially when they are worn by persons!
 - > Drift due to integration
 - > Superimposed movement information

Martin Trächtler - 17.10.2014 - 18th Leibniz Conference of advanced science

Ν

8

START

Inertial Navigation – with MEMS sensors

Advantages of inertial navigation

- Independent of external infrastructure
- Low-cost hardware
- Seamless indoor-/outdoor navigation

Disadvantage

- Conventional inertial navigation does not work with low-cost MEMS sensors
 - > Drift due to integration

Solution: Sensor Fusion !

Sensor and Information-Fusion

(extract of competencies of HSG-IMIT)

inn**BW**

Sensor Fusion: Indoor Localization

Body attached sensor unit

- Accelerometer for step detection and step length scaling;
- Gyro/magnetometer for heading estimation;
- CSS (NanoLOC) range measurements to anchors;

Information of application

Implementation of map constraints to limit the motion

Advanced Particle Filter for position estimation

- **Disadvantages:**
 - external reference system \geq
 - Computing time \geq

Particle Filter (10 iterations) on the same data using the map constraints

ISG-IMIT

Sensor Fusion: Combined Indoor/Outdoor Localisation using ZUPT

Sensor unit mounted on foot

- 3axis gyroscope
- 3axis accelerometer
- 3axis magnetometer
- Microcontroller (MSP430)
- > Low power Bluetooth for communication with handheld

UKF-based estimation algorithm

"Zero Velocity Update" – based measurement model

- > Considering the movement phases for the position calculation
- > "Generation of references" (no step counting!)

1st Demonstrator: Realtime visualization of the position on a tablet

12

Movement phases – Trigger mechanism

Virtual measurements at the still phase of the foot

- Zero Velocity Update (ZUPT)
 No velocity
- Zero Angular Rate Update (ZARU)
 No rotation
- Measurement of gravity acceleration
 - > Correction of pitch and roll

Detection of still phase heuristic

- Parameter tunable
 - > Thresholds, Delays,...

13

Results: Pure Inertial Navigation

Comparison: highly calibrated IMU (Xsens) vs. low-cost IMU

- Only gyroscopes and accelerometers
 - > No heading correction with magnetometers
 - > Basic calibration, no orthogonality compensation

Results:

- Only slight drift over several minutes
- Comparable performance
- (blue line: Inertial Navigation without ZUPT)

14

Results: Pure Inertial Navigation (vertically)

- Sufficient accuracy to resolve the steps of a staircase (2x)
- Chances of floor levels can be detected
 - Only short-time
 - Without barometer not possible in systems using step counting/step length estimation

Martin Trächtler - 17.10.2014 - 18th Leibniz Conference of advanced science

Results: Extension with a magnetometer

Martin Trächtler – 17.10.2014 – 18th Leibniz Conference of advanced science

16

inn**BW**

INNOVATIONSALLIANZ BADEN+WÜRTTEMBERG

Results: Extension with a barometer

Visualization in "Real-Time"

HSG-IMIT

On-site:

2D map material

Outside (@ operation control):

 3D visualization of the building with trajectory of the fire fighter

Martin Trächtler – 17.10.2014 – 18th Leibniz Conference of advanced science

18 inn**BW**

NNOVATIONSALLIANZ

Summary and outlook

- Suitable tracking of persons even with low-cost sensors possible
- Considerable improvement due to filter tuning expected
- Inherent disadvantages of the ZUPT-method only solvable by extension with additional reference systems
 - Snow, escalator, rocky ground,...

Outlook:

- Automatic involvement of WiFi/GPS if available
 - Absolute reference
 - > On tablet/smartphone available without additional costs
- Incorporation of floor plans
- Sensor network for communication

Martin Trächtler - 17.10.2014 - 18th Leibniz Conference of advanced science

