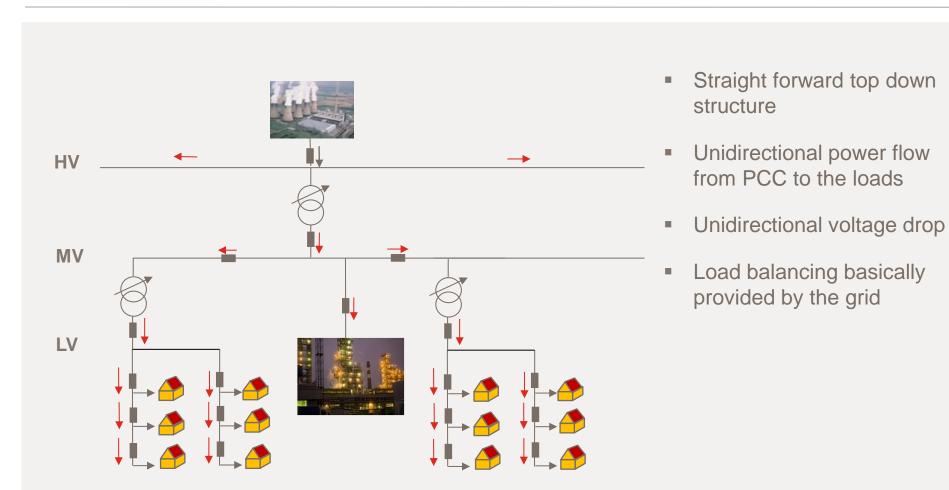
Lösungen zur Spannungsregelung in Verteilernetzen

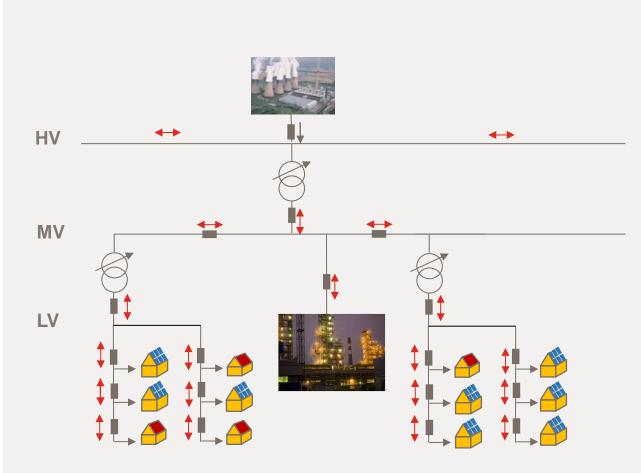
Dr.-Ing. Andreas Averberg 15th LEIBNIZ CONFERENCE OF ADVANCED SCIENCE

02 – 03 Mai 2013 Berlin, Germany

- Traditional and future structure of the distribution grid
- Impacts on grid voltage
- Case Study: STATCOM operation of PV – Central Inverters
- Case Study 2: Voltage control by series regulator
- Summary and conclusion



- Traditional and future structure of the distribution grid
- Impacts on grid voltage
- Case Study: STATCOM operation of PV – Central Inverters
- Case Study 2: Voltage control by series regulator
- Summary and conclusion



Structure of the traditional Distribution Grid

Restructuring of the Distribution Grid

- Bi-directional Power Flow

 ⇒ Bi-directional Voltage
 Drop across distribution
 lines
- Long single feeders, temporarily unloaded lead to increased reactive power consumption
- Highly fluctuating renewable power generation adds on existing volatile load characteristics ⇒ increased variability of line voltage drop

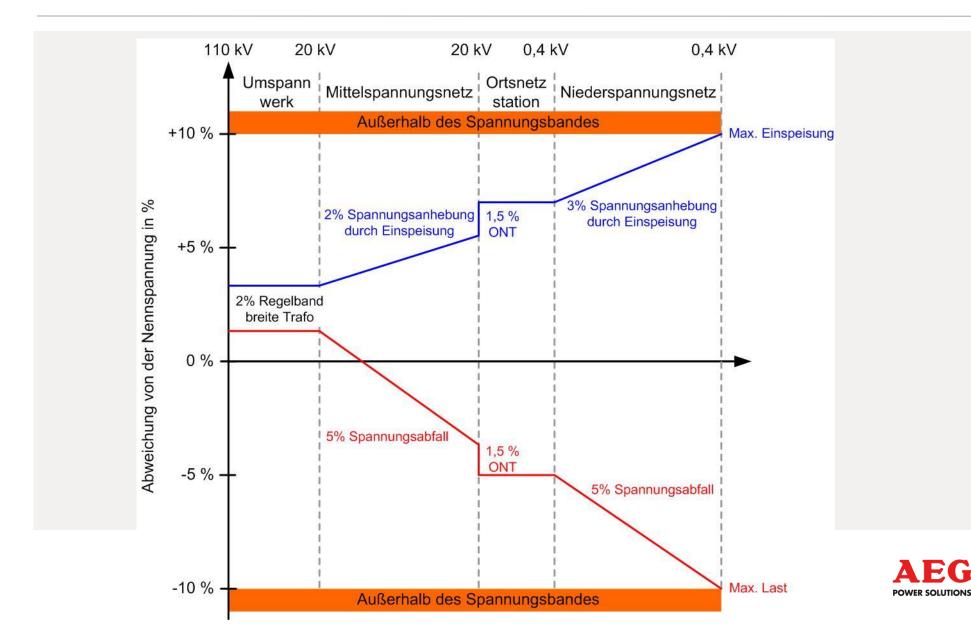
Required: dynamic & active voltage control dynamic reactive power compensation (inductive/capacitive)

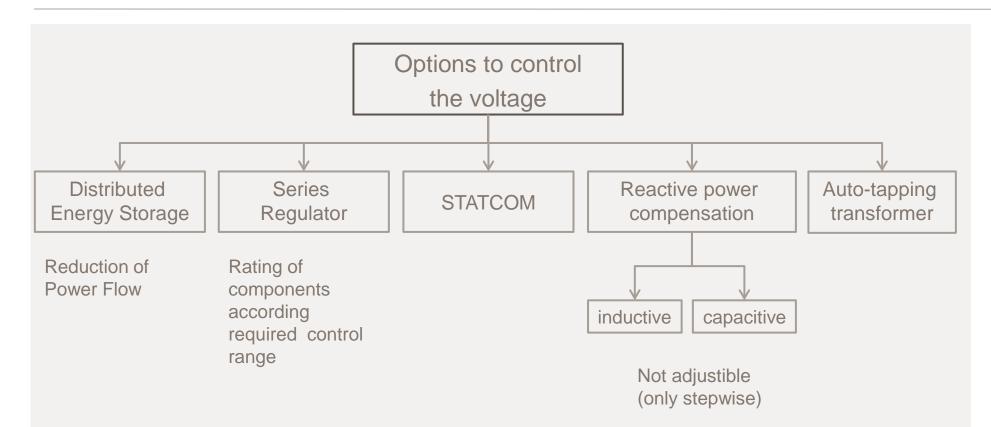
Solutions for Voltage Control in Distribution Grids

Normative Requirements for Voltage Quality in Germany

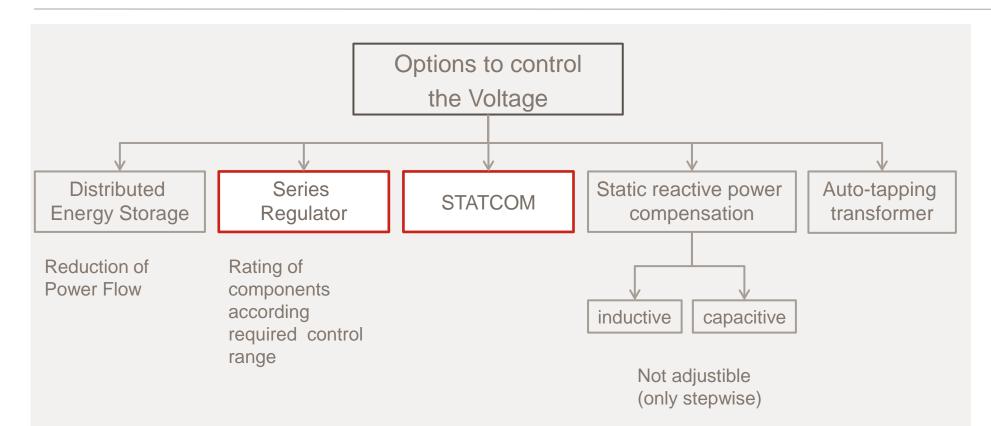
.....

EN 50160	Werte bzw. Wertebereiche		Mess- und Auswerteparameter				
	Niederspannung	Mittelspannung	Basisgröße	Integrationsintervall	Beobachtungsperiode		
Frequenz (bei Verbindung zu einem Verbundnetz)	49,5 Hz bis 50,5 Hz 47 Hz bis 52 Hz		Mittelwert	10 s	1 Woche	95% 100%	
Langsame Spannungsänderungen	230 V ± 10 %	U _c ± 10 %	Effektwwert	10 min	1 Woche	95%	
Schnelle Spannungsänderungen	5% max. 10 %	4% max. 6 %	Effektivwert	10 ms	1 Tag	100%	
Flicker (Festlegung nur für Langzeitflicker)	C _R -1		Flickeralgorithmus	2 h	1 Woche	95%	
Spannungseinbrüche (< 1min)	einige 10 bis 1000 pro Jahr (unter 85 % U _c)		Effektivwert	10 ms	1 Jahr	100%	
Kurze Versorgungs- unterbrechungen (< 3 min)	einige 10 bis mehrere 100 pro Jahr (unter 1 % U _c)		Effektivwert	10 ms	1 Jahr	100%	
Zufällige lange Versorgungsunterbrechungen (> 3 min)	einige 10 bis 50 pro Jahr (unter 1 % U _c)		Effektivwert	10 ms	1 Jahr	100%	
Zeitweilige netzfrequente Überspannungen (Außenleiter - Erde)	meist < 1,5 k V	1,7 bis 2,0 (je nach Sternpunktbehandlung)	Effektivwert	10 ms	keine Angabe	100%	
Transiente Überspannungen (Außenleiter - Erde)	meist < 6 kV	entsprechend der Isolationskoordination	Scheitelwert	kein	keine Angabe	100%	
Spannungsunsymmetrie (Verhältnis Gege- zu Mitsystem)	meist 2 % in Sonderfällen bis 3 %		Effektivwert	10 min	1 Woche	95%	
Oberschwingungsspannung (Bezugswert Un bzw. Uc)	Gesamtoberschwingungsgehalt (THD) 8%		Effektivwert	10 min	1 Woche	95%	
Zwischenharmonische Spannung	Werte	e in Beratung	Werte in Beratung				
Signalspannungen (Bezugswert Un bzw. Uc)	Bereich 9 bis 95 kHz in Beratung		Effektivwert	3s	1 Tag	99%	

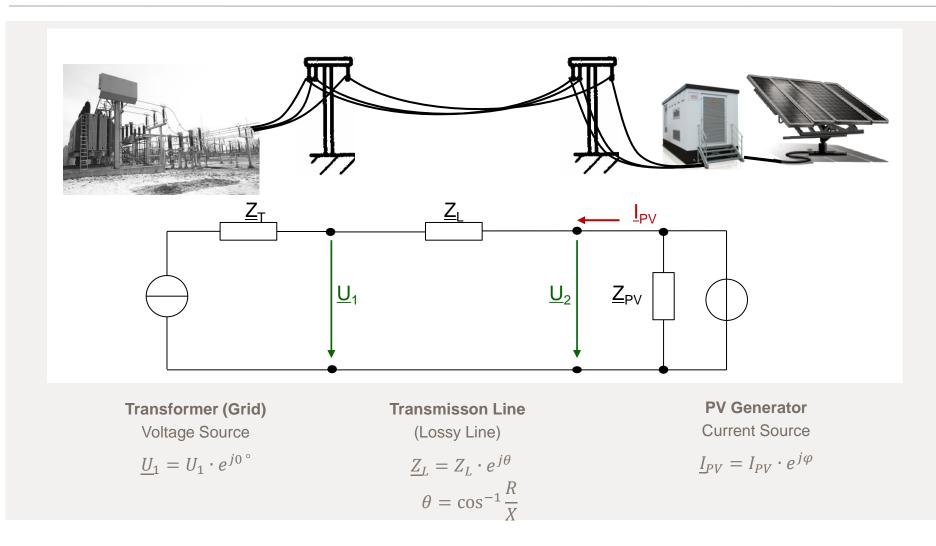

Source: B&W Tech Comp


- Traditional and future structure of the distribution grid
- Impacts on grid voltage
- Case Study: STATCOM operation of PV – Central Inverters
- Case Study 2: Voltage control by series regulator
- Summary and conclusion

Grid voltage for different load scenarios


Restructuring of the Distribution Grid

.....


Restructuring of the Distribution Grid

.....

Benefit of feeding in reactive power

 $\underline{U}_2 = \underline{U}_1 + \underline{U}_{ZL}$

<u>U</u>1

<u>U</u>₂

<u>Z</u>pv

$$\underline{U}_{2} = \underline{U}_{1} + I_{PV} \cdot Z_{L} \cdot e^{j(\varphi + \theta)}$$

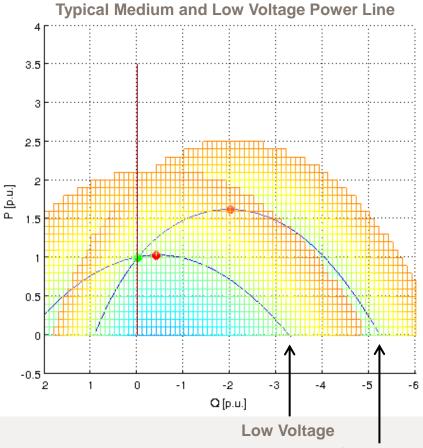
$$\underline{U}_{2} = \underbrace{U_{1} + I_{PV} \cdot Z_{L} \cdot \cos(\varphi + \theta) + j I_{PV} \cdot Z_{L} \cdot \sin(\varphi + \theta)}_{\text{RE}}$$

$$|\underline{U}_{2}| = \sqrt{(U_{1} + I_{PV} \cdot Z_{L} \cdot \cos(\varphi + \theta))^{2} + (I_{PV} \cdot Z_{L} \cdot \sin(\varphi + \theta))^{2}}$$

$$|\underline{U}_{2}| = \sqrt{U_{1}^{2} + 2U_{1} \cdot I_{PV} \cdot Z_{L} \cdot \cos(\varphi + \theta) + (I_{PV} \cdot Z_{L})^{2}}$$
Optimization Parameter!
Only $\cos(\varphi)$ can be changed to influence Voltage at point of

common coupling

AEG POWER SOLUTIONS

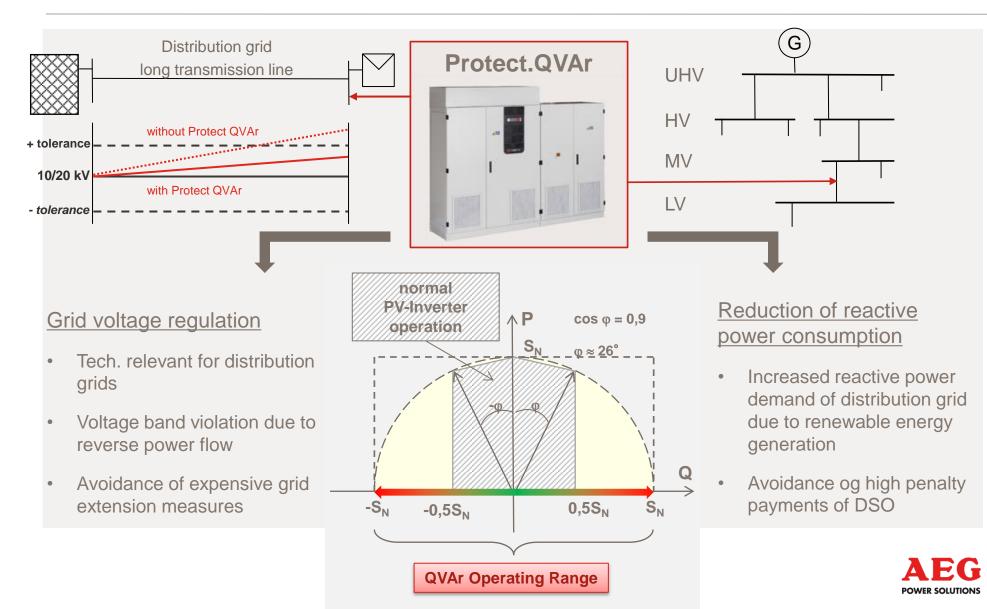

Comparison of STATCOM use in low and medium voltage grid:

- STATCOM has stronger effects when the reactance of a power line is high
- Low voltage grid lines have primarily resistance, so the effects of STATCOM are limited

Spannungsniveau	R $[\Omega/km]$	X [Ω/km]	<i>I</i> _n [A]	$\frac{R}{X}$
Niederspannung	0,642	0,083	142	7,7
Mittelspannung	0,161	0,190	396	0,85
Hochspannung	0,06	0,191	580	0,31
	Niederspannung Mittelspannung	Spannungsniveau[Ω/km]Niederspannung0,642Mittelspannung0,161	Spannungsniveau $[\Omega/km]$ $[\Omega/km]$ Niederspannung0,6420,083Mittelspannung0,1610,190	Spannungsniveau $[\Omega/km]$ $[\Omega/km]$ $[A]$ Niederspannung0,6420,083142Mittelspannung0,1610,190396

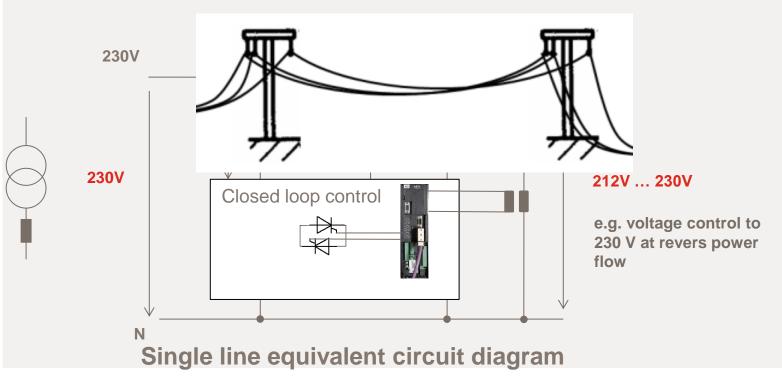
Typical power line parameter

Source: http://www.uni-kassel.de/upress/online/frei/978-3-89958-377-9.volltext.frei.pdf


High Voltage

- Traditional and future structure of the distribution grid
- Impacts on grid voltage
- Case Study: STATCOM operation of PV – Central Inverters
- Case Study 2: Voltage control by series regulator
- Summary and conclusion

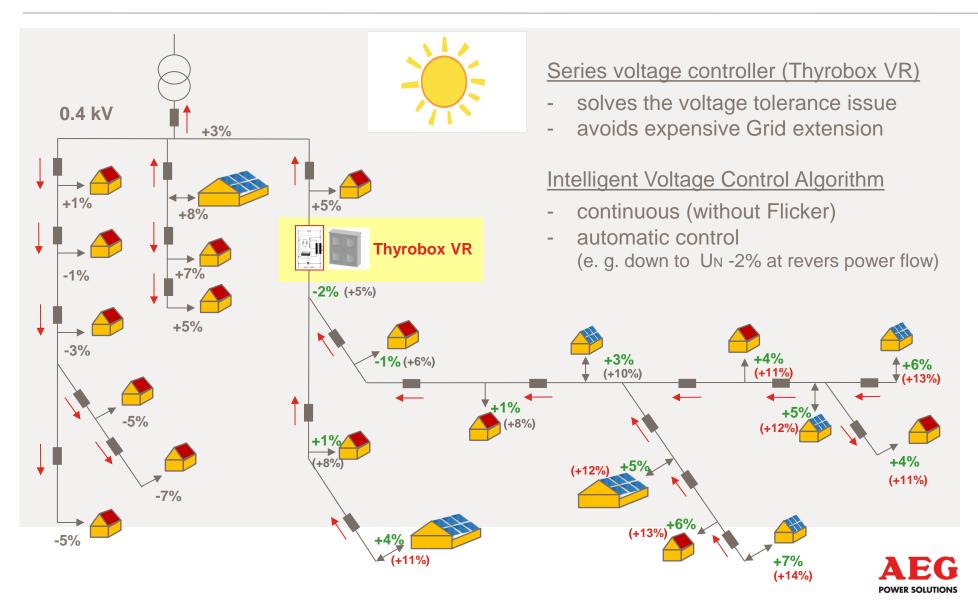
Case Study: STATCOM Operation of PV – Central Inverters



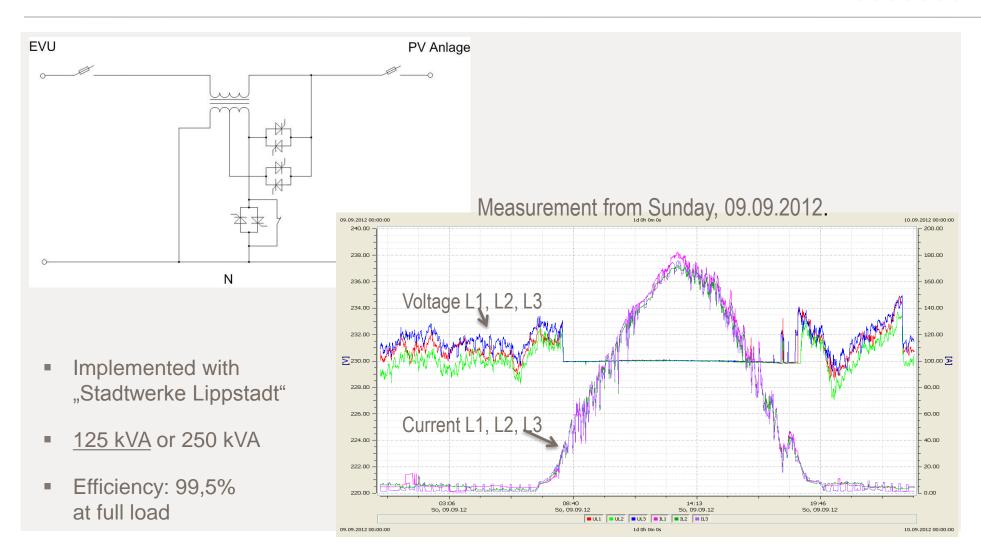
- Traditional and future structure of the distribution grid
- Impacts on grid voltage
- Case Study: STATCOM operation of PV – Central Inverters
- Case Study 2: Voltage control by series regulator
- Summary and conclusion

Voltage reduction by three-phase series regulator

- Transformer with 2 tappings
- Step less adjustment of voltage by voltage sequence control (VSC)
- Control range 0 to -8%


Grid voltage for different load scenarios

110 kV 20 kV 20 kV 0,4 kV 0,4 kV Ortsnetz Niederspannungsnetz Umspann ¦ Mittelspannungsnetz werk station Außerhalb des Spannungsbandes +10 % Max. Einspeisung Abweichung von der Nennspannung in % 3% Spannungsanhebung 2% Spannungsanhebung 1,5 % durch Einspeisung durch Einspeisung ONT +5 % 2% Regelband breite Trafo 0% 5% Spannungsabfall 1,5 % ONT -5 % -5% Spannungsabfall -10 % Max. Last **POWER SOLUTIONS** Außerhalb des Spannungsbandes


20

Case Study 2: Voltage Control by series regulator

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

Case Study 2: Voltage Control by series regulator

AEG POWER SOLUTIONS

Case Study 2: Voltage Control by series regulator

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

Series voltage regulator (Thyrobox VR)

- Continuous voltage control no switching required
- Reliable thyristor technology at efficiencies >99%
- Space saving design to allow assembly near footways, bicycle paths and roads

- The line voltage in distribution grids is more and more exceeding the limits of the voltage tolerance band due to high penetration of renewable power generation
- To avoid expensive grid extension several intelligent voltage control options are available
- A STATCOM is an appropriate device to control the voltage in medium voltage distribution grids by means of dynamic injection of reactive power as requied
- A series voltage regulator is an appropriate device to control the voltage in low voltage distribution grids; specifically in case of long single feeders

Thank you for your attention!

25