One- and two-dimensional microtoxicological screenings in nanoliter-fluid segment sequences with fast micro photometric and bead-based fluorimetric read-out

A. Funfak¹, J. Cao¹, K. Martin², O. Wolfbeis³ and J.M. Köhler¹

 TU Ilmenau, Faculty of Mathematics and Natural Sciences, Institute of Physics, Department of Physical Chemistry / Microreaction Technology, Ilmenau, Germany
 Hans Knöll Institute (HKI) for Natural Products Research, Jena, Germany
 Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany

Content

- Introduction
- Material and Methods
- Results and Discussion
- Conclusion and Outlook

Motivation

- Over 100.000 chemical substances are commercial available in the European Union^{1,2}
- New EU chemical legislation REACH
- Need in research for determining the risk of the combined effect from two or more substances^{1, 3, 4}
- High complexity with high request to the conventional toxicological standard methods
- There is a strong demand for new efficient methods^{5, 6}
 - 1. REACH: Die neue Chemikalienpolitik in Europa, Bundesinstitut für Risikobewertung, 2008
 - 2. http://www.euronews.net/de/article/17/06/2008/chemicals-under-watch, 2008
 - 3. Fent, K.: Ökotoxikologie, 3. Auflage, Stuttgart: Gerog Thieme, 2007
 - 4. Witte, I et al.: BIS-Verlag, Oldenburg, 2007
 - 5. Grimme LH et al.: Human and Ecological Risk Assessment 2: 426-433, 1996
 - 6. Filser J.: Basic and Applied Ecology 9(4), 333-336, 2008

- Assembling and optimization of a micro fluid system by the application of the segmented-flow method for the characterization of combined effects of environmental pollutants
 - Integration of pH-sensitive sensor particles in microfluid segments
 - Assembling and optimization of fluorometric sensors for pH measurement in a micro fluid system
 - Integration of different detection units for the monitoring of varied toxicological endpoints such as cell density and segmentinternal pH
 - ➤ Application for biological studies → toxicological screenings with selected micro organisms

Benefit of micro fluidic method

Droplet flow against conventional methods:

- High throughput of small volumes
- Safe handling
- Smaller amount of chemicals required
- Reduced costs

Droplet flow against microtiterplates:

- Less evaporation
- Screening of multidimensional parameter fields
- Reduced wall contact
- Mixing by segment-internal convention
- Smallest volumes

9th Leibniz conference of advanced science

Principle of "segmented Flow"

Material and Methods

9th Leibniz conference of advanced science

Optical pH-sensitive particles

- HPTS/p-HEMA particles^{1,2} (8-<u>H</u>ydroxy-<u>p</u>yrene-1,3,6 <u>tris</u>ulfonic acid of amino-modified poly (hydroxyethyl methacrylate)
- Spectral properties
 - > Excitation : $\lambda ex = 468 \text{ nm}$
 - > Emission: $\lambda em = 530 \text{ nm}$

Pyren-Derivate

HPTS 8-Hydroxypyrene-1,3,6-trisulfonic acid

- 1. Funfak, A: Microchim Acta 164, 279-286, 2009
- 2. Source: Dipl.-Chem. P. Schrenkhammer, Institute of Analytical Chemistry, University Regensburg

9th Leibniz conference of advanced science

Material and Method

 Measurement of the parameter growth and pH inside microfluid segments

General Experimental-setup

9th Leibniz conference of advanced science

Slide 10

LabView applications for the continous segment generation

generation and analysis of fine graded concentration gradients

9th Leibniz conference of advanced science

LabView applications for the continous segment generation

generation of fine graded concentration gradients for the screening 2-dimensional parameter fields

LabView program for the investigation of combined effects (binary mixcures)

لک TECHNISCHE UNIVERSITÄT ILMENAU

9th Leibniz conference of advanced science

Results and Discussion

Investigated substances:

2,4 Dinitrophenol (DNP)
2,4 Dichlorphenol (DCP)
Au - nano particles (Au-NP)

9th Leibniz conference of advanced science

Results & Discussion

Effects of 2,4-dinitrophenol – concentration resolved¹

1. Funfak, A: Sensors and Actuators B: Chemical 142 (1), 66-72, 2009

Results & Discussion

- Combined effects of 2,4-dichlorophenol and Au-NP
 - 2-D plot of the end point scattering (left) and for parameter normalized intensity ECFS (right)

Conclusion

- The growth of model organism *E. coli* had been determined within very low cultivation volumes (80 nL-400 nL)
- The application of a fluorometrical detector enables the simultaneous monitoring of the fluorescence signal of pH-sensitive micro beads inside microfluid segments
- Highly resolved dose response relationships can be determined for the effector DNP.
- Weak synergistic effects had been found for the binary mixture DCP and Au-NP on the growth and the autofluorescence of *E. coli* cultivated inside microfluid segments
- The potential of the introduced methods for both single and combinatorial toxicological studies had been shown

technische Universität Ilmenau

9th Leibniz conference of advanced science

Outlook

- Further optimization of sensors and analysis method, e.g. integration of pO₂-sensitive sensor particles
- Enlargement of 2-dimensional concentration fields for toxicological screenings
- Investigation of combinatorial effects on eukaryotic cells, human cells etc.

Acknowledgment

Bundesministerium für Bildung und Forschung

- Bundesministerium f
 ür Bildung und Forschung (BMBF) (Projekt OptiMi FKZ-16SV3701) → Financial support
- Stiftung für Technologie, Innovation und Forschung Thüringen → Financial support
- Deutsche Bundesstiftung Umwelt → Financial support
- R. Meier, Prof. O. Wolfbeis, Fakultät Chemie, Instituts für Analytische Chemie, Chemo- und Biosensorik, Regensburg → Preparation of sensorparticles and technical support
- K. Martin, Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e.V.-Hans-Knöll-Institut (HKI) Jena, Abt. Biotechnikum → Preparation *E.Coli*cultures and technical support
- Co-workers FG Physikalische Chemie / MRT, TU Ilmenau

Thank you for your attention

9th Leibniz conference of advanced science

Backup

9th Leibniz conference of advanced science

Isobologramm

Isobologramm für ein Effektniveau von 50 % (in Anlehnung an Loewe, 1953).

