NANOSCIENCE 2009 Lichtenwalde

Thomas Horn, PhD BD Biosciences European Technology Center Allschwil, Switzerland

Development of cellular assays for automated microscopy to measure multiple parameters by single cell high content analysis

BD Biosciences

BD Biosciences

BD Cell Analysis

BD Flow Cytometry

BD Bioimaging

BD Pharmingen

BD Discovery Labware

- High content
- imagingoydiosaeters
- An Bally out short spee cefic
- Cestigies transduction
 Reaggetsts

Instrumentation has Enabled the Scaling and Automation of Biology

The Problem we want to address:

 Biological and medical applications (e.g.Nanoscience)

Test
 Knowledge

Product

The Problem we want to address:

- Test in Biological models :
 - Healthy organism
 - Disease models

à Microscopy -> Pictures -> Data

• Problem: Time consuming repetetive work Solution:

 automated
 microscopy and
 High Content
 Analysis

Goal: to automatically acquire images of multiplexed assays and...

...to turn such images into meaningful data

The High Content Imaging Process and BD Bioimaging Portfolio

High Content Image Analysis

- 1.Step: Automatic acquisition of images of cultures, tissues or whole organisms.
- 2.Step Heart of automated analysis is object detection = finding the single cells or other structures automatically in the image
- 3.Step: Extraction of information from these objects: intensities, distribution and morphology of multiple fluorescent labels

BD Pathway[™] Bioimager: 1. Assays General Assay Categories: functional classification

Fluorescence intensity change

Examples:

- Calcium flux
- Phosphorylation
- Protein expression
- Protein degradation
- Image cytometry

Fluorescence distribution

Examples:

- Cytoplasm to nucleus (e.g. NFkB)
- Cytoplasm to plasma
- membrane (e.g. PKCa)
- Plasma membrane to organelle (e.g. Transfluor GPCR)
- Receptor internalization
- Protein co-localization

Morphology

3

Examples:

- Neurite outgrowth
- Angiogenesis
- Cell differentiation
- Apoptosis

Movement

Examples:

- Chemotaxis/migration
- Wound healing
- Metastasis/invasion
- Migration, Tracking

Δ

- Cell division
- Rounding

BD Pathway[™] Bioimagers: 2. Assays General Assay classification based on protocol

Endpoint Assays

Examples:

- Chemotaxis/migration
- Wound healing
- Metastasis/invasion
- Translocation
- Protein expression
- Whole organism (e.g.Zebrafish)

1

- ADME/Tox.
- Angiogenesis
- Neurite Outgrowth

Kinetic Assays

Examples:

- Calcium flux
- FRET
- Phosphorylation
- Protein expression
- Protein degradation
- Image cytometry
- Tracking
- Differentiation
- Membrane potential

2

The BD Bioimaging Portfolio

Pathway 435

High-performance, full spectrum [confocal] automated imager with powerful image analysis software

Pathway 855

The ultimate flexible live-cell kinetic system with environmental control and liquid handling

BD Pathway[™] 855 Bioimager: 1. Hardware

3. Examples for Applications

3.1. Endpoint assays

Assay Examples: Screening Antibodies for their suitability to use them in Cell Based Assays

Examples of segmentation of the fluorescent signal into specific regions of interest (ROIs), corresponding to the nucleus (A) and cytoplasm (C).

Panels B and D show the corresponding segmentation masks.

Representative images from a purified antibody screen using FITC goat anti-mouse IgG second step reagent

Bioimaging Certified Reagents

5 Product Groups

- Unlabeled Primary Antibodies hundreds of specificities in the areas of cell cycle, apoptosis, signal transduction, cancer, stem cells, neurobiology...
- Directly Conjugated Antibodies growing subset of Abs
 - Many specificities available in 2-3 colors
 - Enables high-level multiplexing, reduces processing time and steps
- Kits Pre-qualified reagents and protocols
- Fluorescent Protein Organelle and Cell Structure Vectors
- Imaging Plates
 - Thin bottom multi-well, plates for optimal image quality

BD Pathway 855: Examples for Applications AttoVision 1.6 new Segmentation Options

Application Examples: Screening Antibodies for use in Cell Based Assays

Representative data from a 47 antibody screen in six 96 well plates

Full automation allows rapid evaluation of:

- Multiple Antibodies
- Various fixation & permeabilization methods
- Antibody dilution
- Saving large amounts of time & increasing productivity

Antibody screening data classified for intensity of cytoplasmic staining using 6 user-defined intensity levels. Cells are color-coded by the software based on their classification level, wells are classified based on the percentage of cells – a "moderate" well is shown

Representative Images

Transfected using FuGENE[®] 6 Transfection Reagent

Dual FP Transfectants

Red nucleus – green mitochondria

Green nucleus – red mitochondria

Multiplexing with Direct Conjugates

BrdU Alexa 488 (Red) Actin Alexa 555 (Purple) β-tubulin Alexa 647 (Green) Hoechst (Blue) BrdU Alexa 488 (Cyan) Ki-67 Alexa 555 (Red) β-tubulin Alexa 647 (Green) Hoechst (Blue)

Helping all people live healthy lives

Selected Cell Cycle and Cell Morphology Markers

BD Pathway 435 and 855: Examples for Applications high resolution confocal imaging

P12 cells differentiated with NGF (Hoechst + beta Tubulin)

Rat brain tissue stained with MAP2 (A), GFAP+MAP2+nNOS (B and C

Examples for Applications Imaging of slides: Comparison wide field versus confocal imaging

Non Confocal

Confocal

Skin sample Cy3-pan-Neuronal, Cy2basement membrane marker IV collagen

Mouse intestine Cytox green Nucleus/ Alexa568phalloidin

BD Attovision: 3D reconstruction of 60x magnification of a stained mouse kidney section

36 z-sections were taken in the confocal mode with a camera binning of 1 and reconstructed in Attovision

Alexa 488 WGA Alexa 568 phalloidin DAPI

Multidimentional Confocal Imaging Modes: x, y, z, multiple view fields, time, color

BD Pathway: Examples for Applications Angiogenesis : Assay Flow Chart

BD Pathway 855: Examples for Applications Angiogenesis

Confocal imaging mode is essential to analyze 3-dimentional cultures

Confocal

Non-confocal

HUVEC-2 cells, stained with Calcien AM, 4X Confocal images show entire network

BD Pathway 855: Examples for Applications Angiogenesis:

Scientific result without confocality does not reflect situation in culture

Confocal

Non-confocal

Segmentation result:

Discrete network islets

Complete network

BD Pathway 855: Examples for Applications Angiogenesis - Dose Response to Suramin

0

FERRER MANAGE	7-									
tmage Vells	2	3	4	5	6	7	0	9	10	 12
*							À.E	14 K 1 A 2	<u>.</u> 1	
8	凝	剡			١Ż	感	\mathcal{X}	ar.	· • •	1
•	驗			5	:12/	意	R.	S		
D State	1. S	338	③			स्टर्		÷.		÷.
E SA		發	家					1.		
• 热	84		×	×X						
6 . Č	愛		ŚŚ		J.K.				1	1 de 1 e
" ***	澄		r X	X	N.	立た。		25		

160 uM

BD Pathway 855: Examples for Applications Angiogenesis: Different Analysis Parameters - Similar Results

P12 cells diffferentiated with NGF (Hoechst + beta Tubulin, 20x, collapsed stack, 4x4 montage)

Effect of Montage on Z'-Factor

As a representative assay, data from a Neurite Outgrowth assay is shown. Increasing the montage size improved the Z'-factor.

Example: Measurement of Morphology to analyze Neurite Outgrowth

Examples for Applications DNA strand break analysis: High-Precision Montage – no stitching necessary

Single image field ~ 20 cells

BD Pathway: Examples for Applications DNA strand break analysis*. Comparison wide field versus confocal imaging

Non-Confocal

Confocal

Confocal vs. Nonconfocal Imaging

As a representative assay data from a DNA damage assay is shown. Confocal imaging improves resolution and data quality.

BD Pathway: Examples for Applications Bacterial infection: High Resolution for Bacteria counting and colocalisation analysis

> Confocal Collapsed Stack Improves Image Quality Individual Bacteria Can be Quantitated

Nonconfocal

Confocal

Comparison of nonconfocal and confocal image acquisition modes. Pseudocolored merged images (40x, 0.9 NA) of macrophages after infection with *L. monocytogenes*. Macrophage actin is green and bacteria are red. Colocalized signals appear as merges of these color channels. Panel A, single plane nonconfocal image. Panel B, confocal collapsed stack of the same image field.

BD Pathway: Examples for Applications Prerequisite for bacteria counting: precise determination of objects. Object-within-object detection algorithmus

Merged Image

Segmentation Mask

Image mask created after Sub Object counting. Panel A, pseudocolored merged single field confocal collapsed stack image (40x, 0.9 NA) of macrophages after infection with *L. monocytogenes*. Macrophage nuclei are blue, bound bacteria are green, and total bacteria are red (whole-cell stain channel not shown). Colocalized signals appear as merges of these color channels. Panel B, segmentation mask of the same image generated after Sub Object analysis depicting macrophage boundaries (yellow line), bound bacteria (green), internal bacteria (red), colocalized bacteria (yellow), and numbered cellular ROIs.

BD Pathway 855: Examples for Applications Mulitiplexing for High-Content Analysis

Host Cell-Signaling Activation in Response to Infection

NFkB Translocation

Multiplexing NF-kB and bacterial replication assays. Panel A, representative pseudocolored cropped confocal collapsed stack images (40x, 0.9 NA) at different time points after infection. NF-kB protein is green, bacteria are red, and colocalized signals appear as merges of these color channels. Panels B and C, NF-kB intensity in the nucleus and the ratio of NF-kB nuclear-to-cytoplasmic intensity, respectively (n = 3 wells).

BD Pathway: Examples for Applications Quantification of Multiplexed Data:

Translocation, bacterial count and area of macrophage covered with bacteria

BD Pathway: Examples for Applications : Multiplexing multiple stainings (primary conjugated Antibodies) to enable Cell Cycle Assays

	25				BrdU	pHis H3	Ki-67
G0 -		<u> </u>	· · · ·	G0	-	0	-
G1		S 🚳 🖏 🕯 🖉	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	G1		-	punctate
S G2		190		S	+	4	punctate
M	Contraction of the second		88	G2	Ť.	1	diffuse
	e 👌 🦈			М		+	diffuse
			0	1.0			

BrdU Alexa 488 (green) pHistone H3 Alexa 647 (white) Hoechst (blue) Ki-67 Alexa 555 (yellow)

How Cell Cycle Can Affect Other Results

Phospho Histone H3 Marker

Signal Transduction Marker (NFkB), intensity based measurement of biology

really a cell cycle difference

BD Pathway: Examples for Applications : Image and Data Analysis of hES Colony

😂 BD

BD Pathway: Examples for Applications : Image and Data Analysis of hES Colony Representative Segmentation Masks

Undifferentiated hES cells

BD Pathway: Examples for Applications : Image and Data Analysis of hES Colony Analysis of Differentiation - Undifferentiated

Merged image

Analysis of Undifferentiated hESCs

Hoechst

Oct 3/4 (- diff)

Sox2 (- diff)

SSEA-4 (- diff)

BD Pathway: Examples for Applications : Image and Data Analysis of hES Colony Analysis of Differentiation - Undifferentiated

Merged image

Analysis of Differentiated hESCs

Oct 3/4 (- diff)

SSEA-1(+ diff)

CDX2 (+diff)

BD Pathway: Examples for Applications : Image and Data Analysis of hES Colony: Pre Sort Images

Merged image

MAP2B (neurons)

Sox2 (neuronal stem)

Nestin (neuronal stem)

BD Pathway: Examples for Applications : Image and Data Analysis of hES Colony Differentiation of Neuronal Stem Cells

hESCs differentiated into neurons produce a mixed culture. Cells were flow sorted to isolate the CD56+/CD184^{dim} population

Sorted population cultured for additional 10 – 14 days

BD Pathway: Examples for Applications : Image and Data Analysis of hES Colony Post Sort Images and Analysis

Merged image

MAP2B (neurons)

/	12000		12217 C
Sox2	Nestin	Map2B	Hoechst
16	9	123	134
11.9	6.7	91.8	100
	16	16 9	16 9 123

Sox2 (neuronal stem)

Nestin (neuronal stem)

BD Pathway: Examples for Applications Neurite Outgrowth Analysis in hES

Neurites can be segmented and measured using Neurite Outgrowth software

BD Pathway 855: Examples for Applications Angiogenesis in whole organisms Confocal Imaging of Zebrafish expressing GFP Angiogenesis-GFP Control

Time-lapse, Transmitted

3D Reconstruction

BD Pathway: Examples for Applications Whole organisms: Zebra Fish

Stunned Fish Placed on Slides

10X Objective Wide Field Imaging 3X3 montage

10X Confocal 3X3 montage 1.5um Stacks 11 Sections

Cells should always be positive for DsRed And only sometimes positive for GFP Those cells that are positive for both will be Blood Stem Cells (Yellow) LR Confocal 10X

LR Wide Field 10X

GFP: 100ms DsRed: 97ms GFP Confocal: 735ms; Gain of 10 DsRed Confocal: 1.7 sec

BD Pathway: Examples for Applications Whole organisms: Zebra Fish Collapsed Stack Confocal Image Analysis

Rolling Ball Background Subtraction on DsRed Image Polygon Segmentation using watershed to split cells Measure DsRed and GFP Intensity with Nuclear Mask

Comments: Images and analysis would be improved with 20X confocal

BD Pathway: Examples for Applications Whole organisms: C. elegans Analysis of fluorescent aggregates

BD Pathway: Examples for Applications Whole organisms: C. elegans Analysis of fluorescent aggregates

10 ms

25 ms

2000

1500

1000

500

0

FITC B Intensity

100 ms

Area

B001

B002

B003

B004

BD Pathway 855: Examples for Applications

3. 2. Kinetic Assays

BD Pathway 855: Examples for Applications Whole organisms: Fura-2 ratiometric calcium imaging

Ca²⁺ response in stably transfected (VR1 receptor) NIH 3T3 cells after stimulation with an agonist

Cells line:Dr. Mike Iadarola, NIDCR, NIH, Bethesda, MD

BD Pathway 855: Examples for Applications BD Attovision: Data Classification of kinetic calcium assay (Fura-2)

The Data Classification tool allows split up the experiment into treatment zones and classify cells and wells e.g. into positive and negative events according to six criteria per parameter and channel, such as the "Amplitude Maximum, Minimum or Average", the "Area Under the Curve" or the "Rate of Rise" and "Rate of Fall" (here parameter "Intensity" was chosen for the Fura-2 channel). This classification may be applied to the whole plate and a red thumbnails indicate those wells contains cells that meet the criteria. Multiple classes and corresponding colours can be set up.

BD Pathway 855: Examples for Applications Combination of well classification with dose-response analysis

55.8 Time (sec.

neiping all people

live healthy lives

Treatment Plate Maps can be generated to correlate the raw data with any kind of drug application

BD Pathway 855: Examples for Applications Analysis of calcium responses: Image Data Explorer for data analysis - Heat Maps

-	_							A CONTRACT OF	PROVINE .		1. A.					
		1	2	3	4	5	6	1	8	3	10	11	12		16.00	
															14.33	
4	^	ATP + Ionomycin - 200 μΜ	ATP + Ionomycin - 200 μM	ATP + Ionomycin - 200 μM	ATP + Ionomycin - 200 μM	ATP + Ionomycin - 200 μM	ATP + Ionomycin - 200 μM	ATP + Ionomycin - 20 μΜ	ATP + Ionomycin - 20 μM	ATP + Ionomycin - 20 μM	ATP + Ionomycin - 20 μM	ATP + Ionomycin - 20 μM	ATP + Ionomycin - 20 μΜ		12.67	
-														-	11.00	
	3		ATP + Ionomycin -	ATP + Ionomycin -	ATP + Ionomycin -	ATP + Ionomycin -	ATP + Ionomycin -	ATP + Ionomycin -	ATP + Ionomycin -	ATP + Ionomycin -	ATP + Ionomycin -	ATP + Ionomycin -	ATP + Ionomycin -	1.7	9.33 7.67	
ľ	°		2 µ.M	2 µM	2 µ.M	2 µ.M	2 µ.M	0.2 μM	0.2 μM	0.2 μΜ	0.2 μM	0.2 μM	0.2 μM		6.00	
															4.33	
	\$		ATP + Ionomycin - 0.0 μ.Μ	ATP + Ionomycin - 0.0 μ.Μ	ATP + Ionomycin - 0.0 μM	ATP + Ionomycin - 0.0 μM	ATP + Ionomycin - 0.0 μM								2,67	
															1.00	
1	2															
-	-															
E	:															
-																
1	•	to	nlot th	ne data	ae He	at Ma	n									
2							P									
ľ	3															
-																

BD Pathway 855: Examples for Applications Analysis of calcium responses: BD Image Data Explorer for data analysis: graphing the data

Average Values In Selected Wells Data Source: RoiSummary_Reanalysis_005 =Fura_2_RatioAreaUnderCurve_TZ2 10^{+} 10^{+}

...Dose Response Curves or Bar Chart as well as many other graph formats.

BD Pathway 855: Examples for Applications Kinetic Multiplexing: Simultaneous Dual Ratiometric Measurement of Calcium and Mitochondria Membrane potential

Time, sec.

Basa

NIH 3T3 Cells Expressing the Ligand-gated VR1 Ion Channel

Fura - 2

334/380nm ratio

JC - 1

520nm and 580nm emission images merged

Apoptosis

Methods – NucView[™] 488 Caspase substrate

Effect of UV radiation on Caspase-3 activity

Caspase-3 Dose Response in Primary Keratinocytes

C10 No 6 SED 12 4 7 K14.avi

BD Pathway 855: Examples for Applications FRET: Images and Segmentation of CFP/YFP FRET pair Isoprotenerol (2uM) application results in a change of FRET

Overlay

BD collaborates with TZI BREMEN to enable direct tracking analysis of Attovision time series with AUTOZELL tracking of cell division

Average Intensity of PI

AttoVision Data Analysis Outputs

- Built in flexibility
 - Open architecture
- Choice of data output
 - Kinetic analysis
 - Data classification
 - EC/IC₅₀ curves
 - Bar charts
 - Scatter plots
 - Heat maps
 - Reports

A	B	5	D	e		a c					
BAIR S	IA FearingPlant	Nav Deta									
WHA D	Carso Label 0:001 +pr	Uner.	ACI Dawn	not cyle callo Armings	Shi Der D 161618	IN C+					
A001 A002	0.001 +g* \$2.+g**	W. 18-12 6 85-08 W. 18-17	16 30	1 14/14/10/07	0.161618					_	
A001 2004	50 rgh 0:001 rgh 50 rgh 0:001 rgh 50 rgh	WL 18-12 4 5048	12	0.028046171 1.327405160 0.909000504	Cal Ciga	The same the same production of the product Address of the product Address of the control of the product Address of the the product Address of the product Addre		1		_	-
1 A001	0.001	N. 15-12	14	0 909007504	T	ton Links	-				
A00	BODF rg*	L 8248	16.	1.33/6014/2	Le Les	2 Projetice (Co	10				
A01 A01 A01	0.001 mg 60 mg/m 0.001 mg	60.00	17	0.0125/78250 1.315108100 0.07110.30% 1.325630562 0.08035.7365	a week the	1 98.0.Conto	- Fed				
A010			81	1.329630562	Parts Des	2. Madeuter C	point Chroit	È			
A011	0.0 spe		72	D 04530600002	B Frontier	2 Low Lyterie	r (Yalang				
1 64301	0.001 -01	41 16-12 65-08	100	0.0M30802 1.310901407	Perite State	A Begaline (in	- 6.0% - 1 4 14	100 <u> </u>			
E00	60 tight	4 16-13 4 16-13 4 16-13	87	CONTRACTOR AND A					finder.	harden	Manager
	60 egte	6 88-08 m. 10-12	75	1.3a1045116 0.007049671	9.0	Chern		Cells .	Parinteg	Sele	Percettage
ecor	Aleany	L 65-02		0.000009631 1.330620968 0.000009030 1.33255000	10000	Margarian .	-		0.07%		181875
600	0.001 -9	N. 10-14	64	0.083009030	1.40	Magaree Magaree Magaree Magaree Magaree Magaree Magaree Magaree Magaree Magaree Magaree Magaree Magaree			0.00% 0.00% 0.00% 0.0% 0.0%	Supervise and a	第二日 日本
E008	0.001 mg 60 eg/m 0.0 eg/m 0.0 eg/m 0.001 mg	uL 10.15 4840	21		8.065	fin-store			18,39%		8175
E010	UB ag/w	5 0 5 0	30	1. 004600437 0.000609034 0.0750000711 0.09730000711	a sar	the pairs			02.09%		12.44%
00112 C001	0.0 sp/m	6 (A)		0.071020071	a	Marganian .	_	1	13.89%	- 6	8.0%
 COOL 	0.005-9	N. 1813 N. 1813	14	D.0941327000		Los Cylano		1	13896 3125 73256 5465	- 8	12.00% 19.70%
C005	0.005 -gr 0.01 ngh 0.05 egh 0.15 egh	18.11	21		1.005	Negator Line Catrico Line Catrico Line Catrico Line Catrico Negator		6 1			94.54%
000	0.1 ape	n. 80-19 8. 18.10	0	0.9039929298	19 CR5	Line Column	-			- 2	Das
C00	0.25 mp# 0.5 mp#	AL 250-1 E 88-17 L 1549	1	1.96360059 0.90062030 1.000408222 1.09650848 1.09650848	93.509	Nacional State		1 2		1	SCALE.
C00	1 1000	1040	#1	1.096243079	0.84	Master die Celti Lies Coloige	11	- 1	and	- 2	
CO1.	1.50	E SET	m kentinte Ø	De antespera d	Q71 ant				6	a way to be a set of the set	A CANCELLAND
	- 60 D	powent [3	006-06-15_00	0 Dye	Proposition	ndde :	(Pre-arisely	in 102		- 1	42.80%
	-	mage . **	WARU						18		4.8%
	1.1.1.1.1.1.1.1	1	2	1 4	6	8 7			1	17	12.24
									10.0	- 2	1.57%
		A)							19.		0.87%
								-	-		1 2/5 0 3/5 1 2/5 1 2/5
									1	-	1.1/5
		6									
	200			_				-			
	61	D									
		3									
		5)					11				
				-1							
		6									
								· · · · · ·			
							1				
		H.									
				_				·		777	
		V///	//			1//	UK ([])	/////			
						- Vie	n	942	9999		
						- 12	/////	80	X		
							/////	$\langle D \rangle$	274		
						- 00/	1211	/////	N	7A -	
	11	194-///				- 137	22	440	///>		
		111	12-			1	400	270	9 L (28	
		111	ana			180	240	3	300	24	
		111		Sec.		00	1111	34	28	5	
		111		din		16	444	2011	12	42	
		111	1 4	IN XI			Carlos	100	(III)	$\langle D \rangle$	
		100	1 80	L.K.	5	1	and a	200	100	6	
		1//		NOR Y	12		1010	200	100	8	
		111		1 aven	S.A.		2344	42	200	5	
		111		ALSO	110	10	1400	40	D^{-1}	3	
- 1		111		100	(A)	13	HHH.	232	800	23	
		1//		Nemon S	-	10	diam's	1	200	€.	_
1		581 ////		1000		5.02	ina	200	100		
		111	1	1000	1000	N.0	11111	1111	200	22	
		111	11-1	1.1. 3.	1		/////	1111	1110	∞	le
		44		No X	-	- 1/	/////	1111	/////	11	
		100	2117				/////	/////	////	11.	
001	E-05		100	1	-		/////	1111	1111	10	
.001	_ 00	121	-			1///	11111	1111	1111	111	

47.1 Time (see

274

Integration with robotics:

BD Pathway Bioimager 855 + Caliper TWISTER II

NANOSCIENCE 2009 Lichtenwalde

Thomas Horn, PhD BD Biosciences European Technology Center Allschwil, Switzerland

Thank you!

Questions?

