NANOSCIENCE 2009 Lichtenwalde

Thomas Horn, PhD BD Biosciences European Technology Center Allschwil, Switzerland

Development of cellular assays for automated microscopy to measure multiple parameters by single cell high content analysis

BD Biosciences

BD Biosciences

BD Cell Analysis

BD Flow Cytometry

BD Bioimaging

BD Pharmingen

BD Discovery Labware

- High content
- imagingoydiosaeters
- An Bally out Stop (Stop (Stop))
- Cestigies transduction
 Reaggetsts

Instrumentation has Enabled the Scaling and Automation of Biology

The Problem we want to address:

 Biological and medical applications (e.g.Nanoscience)

Test
 Knowledge

Product

The Problem we want to address:

- Test in Biological models :
 - Healthy organism
 - Disease models

à Microscopy -> Pictures -> Data

• Problem: Time consuming repetetive work Solution:

 automated
 microscopy and
 High Content
 Analysis

Goal: to automatically acquire images of multiplexed assays and...

...to turn such images into meaningful data

The High Content Imaging Process and BD Bioimaging Portfolio

High Content Image Analysis

- 1.Step: Automatic acquisition of images of cultures, tissues or whole organisms.
- 2.Step Heart of automated analysis is object detection = finding the single cells or other structures automatically in the image
- 3.Step: Extraction of information from these objects: intensities, distribution and morphology of multiple fluorescent labels

BD Pathway[™] Bioimager: 1. Assays General Assay Categories: functional classification

Fluorescence intensity change

Examples:

- Calcium flux
- Phosphorylation
- Protein expression
- Protein degradation
- Image cytometry

Fluorescence distribution

Examples:

- Cytoplasm to nucleus (e.g. NFkB)
- Cytoplasm to plasma
- membrane (e.g. PKCa)
- Plasma membrane to organelle (e.g. Transfluor GPCR)
- Receptor internalization
- Protein co-localization

Morphology

3

Examples:

- Neurite outgrowth
- Angiogenesis
- Cell differentiation
- Apoptosis

Movement

Examples:

- Chemotaxis/migration
- Wound healing
- Metastasis/invasion
- Migration, Tracking

Δ

- Cell division
- Rounding

BD Pathway[™] Bioimagers: 2. Assays General Assay classification based on protocol

Endpoint Assays

Examples:

- Chemotaxis/migration
- Wound healing
- Metastasis/invasion
- Translocation
- Protein expression
- Whole organism (e.g.Zebrafish)

1

- ADME/Tox.
- Angiogenesis
- Neurite Outgrowth

Kinetic Assays

Examples:

- Calcium flux
- FRET
- Phosphorylation
- Protein expression
- Protein degradation
- Image cytometry
- Tracking
- Differentiation
- Membrane potential

2

The BD Bioimaging Portfolio

Pathway 435

High-performance, full spectrum [confocal] automated imager with powerful image analysis software

Pathway 855

The ultimate flexible live-cell kinetic system with environmental control and liquid handling

BD Pathway[™] 855 Bioimager: 1. Hardware

3. Examples for Applications

3.1. Endpoint assays

Assay Examples: Screening Antibodies for their suitability to use them in Cell Based Assays

Examples of segmentation of the fluorescent signal into specific regions of interest (ROIs), corresponding to the nucleus (A) and cytoplasm (C).

Panels B and D show the corresponding segmentation masks.

Representative images from a purified antibody screen using FITC goat anti-mouse IgG second step reagent

Bioimaging Certified Reagents

5 Product Groups

- Unlabeled Primary Antibodies hundreds of specificities in the areas of cell cycle, apoptosis, signal transduction, cancer, stem cells, neurobiology...
- Directly Conjugated Antibodies growing subset of Abs
 - Many specificities available in 2-3 colors
 - Enables high-level multiplexing, reduces processing time and steps
- Kits Pre-qualified reagents and protocols
- Fluorescent Protein Organelle and Cell Structure Vectors
- Imaging Plates
 - Thin bottom multi-well, plates for optimal image quality

BD Pathway 855: Examples for Applications AttoVision 1.6 new Segmentation Options

Application Examples: Screening Antibodies for use in Cell Based Assays

Representative data from a 47 antibody screen in six 96 well plates

Full automation allows rapid evaluation of:

- Multiple Antibodies
- Various fixation & permeabilization methods
- Antibody dilution
- Saving large amounts of time & increasing productivity

Antibody screening data classified for intensity of cytoplasmic staining using 6 user-defined intensity levels. Cells are color-coded by the software based on their classification level, wells are classified based on the percentage of cells – a "moderate" well is shown

Representative Images

Transfected using FuGENE[®] 6 Transfection Reagent

Dual FP Transfectants

Red nucleus – green mitochondria

Green nucleus – red mitochondria

Multiplexing with Direct Conjugates

BrdU Alexa 488 (Red) Actin Alexa 555 (Purple) β-tubulin Alexa 647 (Green) Hoechst (Blue) BrdU Alexa 488 (Cyan) Ki-67 Alexa 555 (Red) β-tubulin Alexa 647 (Green) Hoechst (Blue)

> Helping all people live healthy lives

Selected Cell Cycle and Cell Morphology Markers

BD Pathway 435 and 855: Examples for Applications high resolution confocal imaging

P12 cells differentiated with NGF (Hoechst + beta Tubulin)

Rat brain tissue stained with MAP2 (A), GFAP+MAP2+nNOS (B and C

Examples for Applications Imaging of slides: Comparison wide field versus confocal imaging

Non Confocal

Confocal

Skin sample Cy3-pan-Neuronal, Cy2basement membrane marker IV collagen

Mouse intestine Cytox green Nucleus/ Alexa568phalloidin

BD Attovision: 3D reconstruction of 60x magnification of a stained mouse kidney section

36 z-sections were taken in the confocal mode with a camera binning of 1 and reconstructed in Attovision

Alexa 488 WGA Alexa 568 phalloidin DAPI

Multidimentional Confocal Imaging Modes: x, y, z, multiple view fields, time, color

BD Pathway: Examples for Applications Angiogenesis : Assay Flow Chart

BD Pathway 855: Examples for Applications Angiogenesis

Confocal imaging mode is essential to analyze 3-dimentional cultures

Confocal

Non-confocal

HUVEC-2 cells, stained with Calcien AM, 4X Confocal images show entire network

BD Pathway 855: Examples for Applications Angiogenesis:

Scientific result without confocality does not reflect situation in culture

Confocal

Non-confocal

Segmentation result:

Discrete network islets

Complete network

BD Pathway 855: Examples for Applications Angiogenesis - Dose Response to Suramin

0

"Image "Wells	2	3	4	5	6	7	8	9	10	11	12
· .								14 K 1 A A	с. 1 		
в	弊	2/	(JZ	<u> </u>	۲Ż	感	$ \mathcal{X} $	Jar.			1
c A	部			57	18/	建。		3ª	۰. پ ^۲		
D State		3Xe	济		14	र्फ्स्ट्र इन्हेर्न्		D.			÷¢
E CA	动	☆	家	效		ST.			5		
· 热	RA		×	÷.¥				1 th	. * . 1		
e C			S)		Å.			•	1.5		(ajare
" "	送		r X	X	X.			25			

160 uM

BD Pathway 855: Examples for Applications Angiogenesis: Different Analysis Parameters - Similar Results

P12 cells diffferentiated with NGF (Hoechst + beta Tubulin, 20x, collapsed stack, 4x4 montage)

Effect of Montage on Z'-Factor

As a representative assay, data from a Neurite Outgrowth assay is shown. Increasing the montage size improved the Z'-factor.

Example: Measurement of Morphology to analyze Neurite Outgrowth

Examples for Applications DNA strand break analysis: High-Precision Montage – no stitching necessary

Single image field ~ 20 cells

BD Pathway: Examples for Applications DNA strand break analysis*. Comparison wide field versus confocal imaging

Non-Confocal

Confocal

DNA damage Antibody (Anti H2AX)

Foci detection

40x objective

Confocal vs. Nonconfocal Imaging

As a representative assay data from a DNA damage assay is shown. Confocal imaging improves resolution and data quality.

BD Pathway: Examples for Applications Bacterial infection: High Resolution for Bacteria counting and colocalisation analysis

> Confocal Collapsed Stack Improves Image Quality Individual Bacteria Can be Quantitated

Nonconfocal

Confocal

Comparison of nonconfocal and confocal image acquisition modes. Pseudocolored merged images (40x, 0.9 NA) of macrophages after infection with *L. monocytogenes*. Macrophage actin is green and bacteria are red. Colocalized signals appear as merges of these color channels. Panel A, single plane nonconfocal image. Panel B, confocal collapsed stack of the same image field.

BD Pathway: Examples for Applications Prerequisite for bacteria counting: precise determination of objects. Object-within-object detection algorithmus

Merged Image

Segmentation Mask

Image mask created after Sub Object counting. Panel A, pseudocolored merged single field confocal collapsed stack image (40x, 0.9 NA) of macrophages after infection with *L. monocytogenes*. Macrophage nuclei are blue, bound bacteria are green, and total bacteria are red (whole-cell stain channel not shown). Colocalized signals appear as merges of these color channels. Panel B, segmentation mask of the same image generated after Sub Object analysis depicting macrophage boundaries (yellow line), bound bacteria (green), internal bacteria (red), colocalized bacteria (yellow), and numbered cellular ROIs.

BD Pathway 855: Examples for Applications Mulitiplexing for High-Content Analysis

Host Cell-Signaling Activation in Response to Infection

NFkB Translocation

Multiplexing NF-kB and bacterial replication assays. Panel A, representative pseudocolored cropped confocal collapsed stack images (40x, 0.9 NA) at different time points after infection. NF-kB protein is green, bacteria are red, and colocalized signals appear as merges of these color channels. Panels B and C, NF-kB intensity in the nucleus and the ratio of NF-kB nuclear-to-cytoplasmic intensity, respectively (n = 3 wells).

BD Pathway: Examples for Applications Quantification of Multiplexed Data:

Translocation, bacterial count and area of macrophage covered with bacteria

BD Pathway: Examples for Applications : Multiplexing multiple stainings (primary conjugated Antibodies) to enable Cell Cycle Assays

		BrdU pHis H3	Ki-67
G0	G0		-
G1	G1		punctate
G2 62 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	S	+ -	punctate
	G2	-	diffuse
	M	- +	diffuse
	S - 16 14	1	

BrdU Alexa 488 (green) pHistone H3 Alexa 647 (white) Hoechst (blue) Ki-67 Alexa 555 (yellow)

How Cell Cycle Can Affect Other Results

Phospho Histone H3 Marker

Signal Transduction Marker (NFkB), intensity based measurement of biology

really a cell cycle difference

BD Pathway: Examples for Applications : Image and Data Analysis of hES Colony

😂 BD

BD Pathway: Examples for Applications : Image and Data Analysis of hES Colony Representative Segmentation Masks

Undifferentiated hES cells

BD Pathway: Examples for Applications : Image and Data Analysis of hES Colony Analysis of Differentiation - Undifferentiated

Merged image

Analysis of Undifferentiated hESCs

Hoechst

Oct 3/4 (- diff)

Sox2 (- diff)

SSEA-4 (- diff)

BD Pathway: Examples for Applications : Image and Data Analysis of hES Colony Analysis of Differentiation - Undifferentiated

Merged image

Analysis of Differentiated hESCs

Oct 3/4 (- diff)

SSEA-1(+ diff)

CDX2 (+diff)

BD Pathway: Examples for Applications : Image and Data Analysis of hES Colony: Pre Sort Images

Merged image

MAP2B (neurons)

Sox2 (neuronal stem)

Nestin (neuronal stem)

BD Pathway: Examples for Applications : Image and Data Analysis of hES Colony Differentiation of Neuronal Stem Cells

hESCs differentiated into neurons produce a mixed culture. Cells were flow sorted to isolate the CD56+/CD184^{dim} population

Sorted population cultured for additional 10 – 14 days

BD Pathway: Examples for Applications : Image and Data Analysis of hES Colony Post Sort Images and Analysis

Merged image

MAP2B (neurons)

	/	12000		122 C
	Sox2	Nestin	Map2B	Hoechst
Post Sort	16	9	123	134
Percent	11.9	6.7	91.8	100

Sox2 (neuronal stem)

Nestin (neuronal stem)

BD Pathway: Examples for Applications Neurite Outgrowth Analysis in hES

Neurites can be segmented and measured using Neurite Outgrowth software

BD Pathway 855: Examples for Applications Angiogenesis in whole organisms Confocal Imaging of Zebrafish expressing GFP **Angiogenesis-GFP** Control

Time-lapse, **Transmitted**

Imaged on Pathway HT: GFP Confocal, 384-well plate

3D Reconstruction

BD Pathway: Examples for Applications Whole organisms: Zebra Fish

Stunned Fish Placed on Slides

10X Objective Wide Field Imaging 3X3 montage

10X Confocal 3X3 montage 1.5um Stacks 11 Sections

Cells should always be positive for DsRed And only sometimes positive for GFP Those cells that are positive for both will be Blood Stem Cells (Yellow) LR Confocal 10X

LR Wide Field 10X

GFP: 100ms DsRed: 97ms GFP Confocal: 735ms; Gain of 10 DsRed Confocal: 1.7 sec

BD Pathway: Examples for Applications Whole organisms: Zebra Fish Collapsed Stack Confocal Image Analysis

Rolling Ball Background Subtraction on DsRed Image Polygon Segmentation using watershed to split cells Measure DsRed and GFP Intensity with Nuclear Mask

Comments: Images and analysis would be improved with 20X confocal

BD Pathway: Examples for Applications Whole organisms: C. elegans Analysis of fluorescent aggregates

BD Pathway: Examples for Applications Whole organisms: C. elegans Analysis of fluorescent aggregates

10 ms

25 ms

2000

1500

1000

500

0

FITC B Intensity

100 ms

Area

B001

B002

B003

B004

BD Pathway 855: Examples for Applications

3. 2. Kinetic Assays

BD Pathway 855: Examples for Applications Whole organisms: Fura-2 ratiometric calcium imaging

Ca²⁺ response in stably transfected (VR1 receptor) NIH 3T3 cells after stimulation with an agonist

Cells line:Dr. Mike Iadarola, NIDCR, NIH, Bethesda, MD

BD Pathway 855: Examples for Applications BD Attovision: Data Classification of kinetic calcium assay (Fura-2)

The Data Classification tool allows split up the experiment into treatment zones and classify cells and wells e.g. into positive and negative events according to six criteria per parameter and channel, such as the "Amplitude Maximum, Minimum or Average", the "Area Under the Curve" or the "Rate of Rise" and "Rate of Fall" (here parameter "Intensity" was chosen for the Fura-2 channel). This classification may be applied to the whole plate and a red thumbnails indicate those wells contains cells that meet the criteria. Multiple classes and corresponding colours can be set up.

BD Pathway 855: Examples for Applications Combination of well classification with dose-response analysis

55.8 Time (sec.

neiping all people

live healthy lives

Treatment Plate Maps can be generated to correlate the raw data with any kind of drug application

BD Pathway 855: Examples for Applications Analysis of calcium responses: Image Data Explorer for data analysis - Heat Maps

	1	2	3	4	5	6	1	8	9	10	tt	12	16.00
*	ATP + Ionomycin - 200 μM	ATP + Ionomycin - 20 μM	ATP + Ionomycin - 20 μM	ATP + Ionomycin - 20 μM	ATP + Ionomycin - 20 μM	ATP + Ionomycin - 20 μM	ATP + Ionomycin - 20 µM	14.33 12.67 11.00					
в	ATP + Ionomycin - 2 µM	ATP + Ionomycin - 2 μM	ATP + Ionomycin - 0.2 μM	ATP + Ionomycin - 0.2 µM	ATP + Ionomycin - 0.2 μM	ATP + Ionomycin - 0.2 µM	ATP + Ionomycin - 0.2 μM	ATP + Ionomycin - 0.2 µM	9.33 7.67 6.00				
c	ATP + Ionomycin - 0.0 μM	ATP + Ionomycin - 0.0 µM	ATP + Ionomycin - 0.0 µM	ATP + Ionomycin - 0.0 μΜ	ATP + Ionomycin - 0.0 μΜ	ATP + Ionomycin - 0.0 µM							4.33 2.67 1.00
D													
E													
F	to	plot th	ne data	as He	eat Ma	p							
G													

BD Pathway 855: Examples for Applications Analysis of calcium responses: BD Image Data Explorer for data analysis: graphing the data

...Dose Response Curves or Bar Chart as well as many other graph formats.

BD Pathway 855: Examples for Applications Kinetic Multiplexing: Simultaneous Dual Ratiometric Measurement of Calcium and Mitochondria Membrane potential

Time, sec.

Basa

NIH 3T3 Cells Expressing the Ligand-gated VR1 Ion Channel

Fura - 2

334/380nm ratio

JC - 1

520nm and 580nm emission images merged

Apoptosis

Methods – NucView[™] 488 Caspase substrate

Effect of UV radiation on Caspase-3 activity

Caspase-3 Dose Response in Primary Keratinocytes

C10 No 6 SED 12 4 7 K14.avi

BD Pathway 855: Examples for Applications FRET: Images and Segmentation of CFP/YFP FRET pair Isoprotenerol (2uM) application results in a change of FRET

BD collaborates with TZI BREMEN to enable direct tracking analysis of Attovision time series with AUTOZELL tracking of cell division

Average Intensity of PI

AttoVision Data Analysis Outputs

- Built in flexibility
 - Open architecture
- Choice of data output
 - Kinetic analysis
 - Data classification
 - EC/IC₅₀ curves
 - Bar charts
 - Scatter plots
 - Heat maps
 - Reports

A	B	5	D	e e		2.					
WELL IN BALL NO CONSTR	FROME MAN. II	ar Inta									
CONTRACT OF	Dese	North N	ACI Course	INC UNIT OF	8-04-11-1	1999					
A001	Color remains	18-12	- 16	D DOSTROTOS	10.161618	0.01294					
A002	SC egital.	85-00	10	1.34/90013	- ILA			102		1.111	
1004	Grand	6040	12	1.3274661680	BR. Ballin	121-1910 B		-	_		-
ADDE	D 001 regime	15-12	14	0 909007504	10-17	erginale - Mai	1 = 100				
AU	0.001 rg/m.	16-17	- 16	DIRECTION	13 Cal Lie H WELL C	a 2 Negetics (Red				
AD	BUDI name.	18-12	12	1.315188300	Hi hand the	en 1 Hage Com	tes Field				
4010	60 rght.	68.08		1.329630962	at west the	os 7. Walkons	Centre (Deniel				
A010	0.0 spet.			0.0530589007	an over the	et 2 Low Later	ter (Talland				
EAST.	DOD'S regime.	16-12		0.09430802	Strid De	er i Begeine	(Crimer)				
6001	0.001 -9"%	16-12	- 72	0.067109956	22 13 mat	(Mag)	Test	Pastan	-	lugare bears	
F00#	All eights,	88-08	76	1.3a1545716	20	Chern		Celle	Paripulary	Call Present	100
POOP	Straffe.	65-02	- 58	1.330670368	18 Ath 17 Ath	Alegarian .	10	3	0.07%	101 CB10	2
6007	60.001 regime.	10-12	64	0.088009630	3.47	Negative			3.09%	17.183	14
600H	0.001 reg/mL	1849	21	0.060112090	18.005	Singation .	1	- 75	19,076	12 R.C	8
6010	UB spirit.	0		0.0305029034	10.067	Magaine .		1	(2.8%)	- 8.84	10
0012	0.0 spirit.	and an		0.675000071	34 (35)	Margaden -			13.89%	6.83	à.
C001	0.001-97%	No.13	14	D.094(10,788)	n cos	Los Cylates Negates		1	20.12% 20.72%	10 12s h NA	14
0003	0.01 ng/mL	18.13	21	2.903800056	97 LEB 10 1005	Allegatore Allegatore	- M	18	31036	2 22	12
C00#	0.1 spire.	18.10	0	0.903892128	19.105	LiseColumn			21679	1 14	2
CODE	0.25 mg/H/4	256-10	- 3-	1.000408222	AL 2009	Magazina		- A	23,176	- 10 Hz	5
CODE	1 notes	1648	- #L	1.096.243079	4 84	Lier Column			645	N 43	8
C000	601	mant a	- hidide	ON WEATHER .	with an					7 88	2
0111	in the	ment [20	06-08-15-0	0.2 Dom	Provident	lastite -	• Discontained	- 1002 · ·	linda	2 49	15.
0012	001		dina 1						1	27 622	10.
					10				2	11 8.8	2
		-	-	1.1	-				-	2 18	1
	A								2	0.18	14
	100							-		1.18	n.
									- 22	1.11	m.,
	C										
								·	D		
	0.0										
	1.1							1			
	5										
								-			
	P										
								· · · · · ·			
	G										
								1			
	H										
	100										
_		VIII	74			1/	1141111	m	mll	72	
		111					ZAD4		////		
		111	2				11177	St -			
			2			- Ø	//////	m	X		
		2///				- 12	1444	+///	89	*	
	119	. 111	2				7240	00	M		
			1				8277	777 C	60	×	
			$2 \cap 3$	L.		1	62978	×~.,	200	20	
				Sec.		12	777 77	440		8	
		111		in		1	2000	UMA	228	42	
		111		IN M	1		Carlos .	100	111		
	00	1///	8	ALVA.	5		Illan.	100		8	
		111		N/A	112		-		-	8	
		111		20 HA	Par.		2011	410		8	
		111		ALC: N	11		ano k	8407	22	3	
		11/1		0.00	10	183	HHHA	1825	200	2	
		111		14 mar 1	<u></u>	10.1	Children La	200	27/1	€	
1	58	1///		1000			Time	204	100	8	
		111			100		1111111	1111	900	22	
		1///		1.1			//////	1111	111	🛪 le	
		444		W X		- 10	//////	1111	1111		
		100	and it		-		//////	/////	/////		
OOE	-05	100	100				//////	1111	1111		

47.1 Time (see

274

Integration with robotics:

BD Pathway Bioimager 855 + Caliper TWISTER II

NANOSCIENCE 2009 Lichtenwalde

Thomas Horn, PhD BD Biosciences European Technology Center Allschwil, Switzerland

Thank you!

Questions?

