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Outline

 Status of Semiconductor Technology
 Introduction to Superconductor Electronics 
 Superconductor Electronics Technology
 Applications
 Conclusions
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Silicon is not so bad …

Mosquito’s head ~ 0.5mm3 ?

Pentium: ~ 100mm2×5µm active layer = 0.5mm3

Computers are capable of …
 wining chess with Gary Kasparov (Deeper Blue > 1,000×Pentium)
 Forecasting next day’s weather
 calculating trajectory of Mars
 making my slides
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Moore’s Law - Chip Complexity

Background slide from 
N. Yoshikawa
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Consequences of Scaling - Clock Frequency
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Breakdown of Moore’s Law for Clock Frequency

Background slide from 
N. Yoshikawa

10,000

1,000

100

10

Cl
oc

k F
re

qu
en

cy
 [M

Hz
]

1990                       1995                        2000                       2005                       2010
Calendar Year

1.6×/year

1.0×/year

Trends of the clock frequency of recent 
high performance processors



7

Power Density Will Increase

Ref. Intel
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Increase of Power Consumption

Background slide from 
N. Yoshikawa

Trends of the power consumption of 
single chips of recent high performance 
processors
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Limit Technology - Lowest Barrier
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Limit Technology - Heisenberg’s Uncertainty Principle
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End of Story?

Use Magnetic Flux Quanta
Instead of
Electrical Charges
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Power Dissipation

*) Single Flux Quantum 
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Single Flux Quantum Electronics

Basic building blocks of SFQ circuits
 Josephson Junction: basic switching device, generates single flux quanta
 Inductance
 Resistor

In contrast to CMOS
In SFQ circuits inductances define the functionality.
The mode of operation depends on the wiring between the Josephson junctions.

Drawbacks
 Careful inductance calculation is required. 
 Layout scaling is not possible.
 Storage of flux quanta is chip-area-consuming.
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Important Attributes of SFQ Digital Circuits

 Fast and low-power switching devices that generate identical 
single-flux-quantum data pulses.

 Loss-less superconducting wiring for power distribution.
 Latches that store a magnetic-flux quantum.
 Low loss, low dispersion integrated superconducting 

transmission lines that support “ballistic” data and clock transfer 
at the clock rate.

 Cryogenic operating temperatures that reduce thermal noise and 
enable low power operation.

 SFQ circuit fabrication that can leverage processing technology 
and computer-aided design (CAD) tools developed for the 
semiconductor industry.
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Operation of SFQ Circuits

TRANSFER STORAGE

DECISION

SFQ circuits are built from 
superconducting loops and 
overdamped Josephson 
junctions

transfer: a single flux quantum is 
moved from one loop to another one 
via switching a Josephson junction

storage:  a large inductor allows to store the 
circulating current and traps the flux quantum

decision: a clock signal 
drives a tow junction 
pair and forces one of 
them to switch

super-
conductor

super-
conductor

damping
resistor

isolator

bias
current
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J
CJ

R
IC

LP

critical current density jC = 1kA/cm2

critical current IC = 250µA
capacitance CJ = 1.25pF
resistance R ~ 1 Ω
parasitic  inductance LP = 1pH

Josephson junction as a thin-film device. Cross 
section and top view.

Josephson Junction 
Characteristic Parameters
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Josephson Junction Dynamics
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Superconductor Electronics Technology

Nb200 nmM0
Nb2O550 nmI0A

SiO200 nmI0B
Nb250 nmM1

Nb
Al2O3

Nb

60 nm
12 nm
30 nm

T1
Nb2O570 nmI1A

SiO150 nmI1B
Mo80 nmR1

Nb350 nmM2
SiO150 nmI2

Au50 nmR2
Shunt

Via, Pad

Josephson Junction

MaterialThicknessLayer

Main features of SFQ technology
 Works with metals rather than semiconductors 
 Three superconducting layers
 Nb/AlAlOX/Nb trilayer for junctions with typically jC=1 kA/cm2

 External shunt with typical sheet resistance of 1Ω/



19

Scaling Down SFQ - Chip Performance

Josephson 
Junction Size 

[μm]

Integrated Circuit 
Density

[cells per cm²]

Integration 
Level

SFQ Pulse 
Width 
[ps]

Maximum 
Clock Rate 

[GHz]

Minimum 
Power 

Dissipation
[μW per cell]

3.5 10,000 LSI 4 10-40 0.03
1.5 30,000 VLSI 2 40-80 0.06
0.8 100,000 ULSI 1 70-130 0.1
0.4 1,000,000 SLSI 0.8(?) 100-200(?) 0.15(?)

Basic figures of merit for niobium trilayer SFQ circuits for different minimum feature sizes. 
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Scaling down the SFQ - Technology
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Shrinking superconductor electronics. Scaling 
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speed of integrated circuits can be increased 
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IPHT: room temperature
IPHT: UV oxidation
W. M. Mallison et al., IEEE Trans. Appl. 
Supercond. 5(1995)2, 2330-2333.

Critical current density as a function of oxygen 
exposition; ultra-violet light-assisted oxidation 
allows to reach very low values of the critical 
current density (triangles).
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SFQ Foundries

Manufacturing facilities for niobium-based digital superconducting electronic 
circuits on costumer request.

Japan USA EU
Institution NEC Hypres IPHT

Process SDP ADP2 1000-1 4500-1 rsfq1d
Current Density 
[kA/cm2]

2.5 10 1 4.5 1

Minimum Lateral JJ 
Dimension [μm]

2 1 3 1.5 3.5

Nb Layers 3 6 …10 4 4 3
Complexity 23.5k 12k ...15k 5k
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dc-SFQ Converter

J1
225μA

R2=14.3Ω

bias

R1=9.1Ω

L1

Lb2
Lb1

input

outputLp1

L3

Lp3Lp2

L2

J3
250μA

J2
225μA

Schematic. The optimisation of 
parameters is very important for 
the correct function.

Layout

Chip
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micro-strip line interconnects (MSL)

Josephson
transmission line Line Crossing dc/SFQ converter

merger

delay-FF toggle-FF

SFQ/dc converter

dc/SFQ-JTL-SFQ/dc circuit

splitter

RS-FF

www.fluxonics-foundry.de

Standard Cell Library
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Circular Shift Register

512 bit memory
5,153 Josephson junctions

www.fluxonics-foundry.de
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Fields of Application

SFQ is not a technology for everyday devices but 
can do well at the high-end.

 High-speed computing.
 Telecommunication.
 Imaging.
 Mixed signal.
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The Cryocooled X-band All-Digital Receiver (XADR) 
system demonstration with live XTAR satellite. 
Digital data including video were transmitted over 
satellite and received by HYPRES XADR system by 
directly digitizing X-band (7.6 GHz) satellite 
downlink signal with high sampling rate clock. 

SFQ in Telecommunication

Microphotograph of the low-pass ADR 1 cm2 chip 
(Hypres Inc.) containing 12,000 Josephson 
junctions clocked at 29.44 GHz. In the Nyquist 
band of 10 MHz, this chip shows 75.7 dB signal-to-
noise-and-distortion ratio (SINAD).

The All Digital Receiver (ADR) chips comprise 
either a low-pass or band-pass single loop delta 
modulator with phase modulation–demodulation 
architecture together with digital in-phase and 
quadrature mixer and digital decimation filters. 
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SFQ Based Microprocessor

 8 bit, bit-serial 
 1,000 MOPS at peak
 25 GHz bit-operation
 4-stage pipelining
 22,302 JJs
 2.63A (6.5 mW)
 128-bit inst. Cache
 64-data cache
 6.3×6.3 mm2

 8 mm die
Background slide from 
N. Yoshikawa

Most complex circuit realised in 10 kA/cm2 process by ISTEC 
Japan. 

 

controller

inst. cache 
(64 b)

data cache 
(128 b)

register file 

ALUs 

Photograph of the 8 bit serial microprocessor Core1γ 
(photo - courtesy of A. Fujimaki).
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Superconducting petaFLOP Computer

Design study of the system installation concept for petaflops computer. Enclosure for the 
superconducting processors is 1 m3 white structure with cooling lines into the top (left hand side). 
Packaging concept showing 512 fully integrated multi-chip modules (right hand side). 

NSA Study on Superconducting 
Technology Assessment, 2005

SFQ core
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Conclusion
 Silicon has still a lot of potential: Performance 

instead of speed! 
 SFQ is a technology for high-end devices.
 Works well on lab level, foundries are the next step.
 Comparatively simple thin-film technology: only 

metals and insulators.
 High performance can be reached already at 

moderate feature sizes: submicron range.
 Cooling needed but is not an issue.
 SFQ opens new performance levels in high-speed 

computing, telecommunication, ADC, mixed signal.
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About SFQ
WHAT IS RSFQ CIRCUITRY?
Single Flux Quantum (SFQ) is the latest generation of superconductor circuits based on 
Josephson junction devices. It uses generation, storage, and transmission of identical single 
magnetic flux quantum pulses at rates approaching 1,000 GHz. Small asynchronous circuits have 
already been demonstrated at 770 GHz, and clocked SFQ circuits are expected to exceed 100 
GHz.

JOSEPHSON JUNCTIONS
The Josephson junction (JJ) is the basic switching device in superconductor electronics. 
Josephson junctions operate in two different modes: switching from zero voltage to the voltage 
state and generating single flux quanta.
The early work, exemplified by the IBM and the Japanese Josephson computer projects of the 
1970’s and 1980’s, exclusively used logic circuits where the junctions switch between 
superconducting and voltage states and require AC power. SFQ junctions generate single flux 
quantum pulses and revert to their initial superconducting condition. RSFQ circuits are DC 
powered.



31

Moore‘s Law –
Frequency Scaling

chip clock
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Background slide from 
P. Zeitzoff, Sematech

Historical grow rate = frequency ×2 every 4½ years
(meaning 17% per year, since 1.174.5=2)
This corresponds to 2 CMOS generations
(since Fn+2/Fn=1/k2=2)
Giving 1 CMOS generation per 2.25 years
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