13th LEIBNIZ CONFERENCE OF ADVANCED SCIENCE 26. - 27. April 2012 NANOSCIENCE 2012

Test stand for the Characterisation of Thermal Interface Materials from the macro level up to the nano level

Mohamad Abo Ras

Berliner Nanotest und Design GmbH and Fraunhofer Institute for Electronic Nanosystems (ENAS)

Outline

- Application of Thermal interface Materials
- Characterization of thermal interface materials
- New platform for different modules for the characterization of TIM
- Characterization capabilities
- Interesting results
- Summary

lerliner Nanotest und Design GmbH

Motivation

© M. Abo Ras, April 2012

Page 3

Applications of thermal interface materials

Examples of TIM applications

- > TIM1 (die to package or to heat spreader)
- TIM2 (package or heat spreader to heat sink)
- Solder and Underfill

Type of TIMs:

- Grease, adhesive, pad, gap filler, solder, mono metal, etc.
- Electrical conductive, electrical insulating

Aims & Challenges

- High thermal conductive
- Low thermal interface resistance
- Low bond line thickness
- Large contact area

Importance of Thermal Interface Materials

- Market analysis for Thermal Interface Materials & Thermal Management Technologies
 - Market size: +10.3%/year: 6.8 B€ in 2008 → 11.1 B€ in 2013
 - Market share:
 - In 2007: Computer industry: 57%, Telecom: 16%
 - In 2013: Medical: 12%, Office electronics: 12%
 - Main actors: Bergquist, Chomerics, Thermalloy, Lytron, Power Devices, DoW Corning, Shin Etsu, Denka, Arctic Silver, Wacker Chemie, Thermarcore, Hereaus, ...
- field of application
 - Avionics
 - Aerospace
 - High Brightness LEDs
 - Power electronics.

- Microprocessor
- Data centers
- Automotive
 - Etc.

NANOTEST Berliner Nanotest und Design GmbH

Example: Power Transistors

TO-220 Package: typically used for power MOSFETs, IGBTs, Bipolar Transistors, etc.

Thermal Interface Materials and Heatsinks represent more than 90% of the thermal resistance

Nanotechnologies to improve heat transfer

→ Advanced technologies need advanced test systems

NANOTEST Berliner Nanotest und Design GmbH

MicroMaterialsCenter

Characterization of Thermal Interface Materials

© M. Abo Ras, April 2012

Page 8

Methods for Characterization of TIMs

Transient methods

- Transient Flash
- Synthesized dynamic models
- JESD 51: Thermal

measurement of component

packages

Steady state methods

Disadvantage of ASTM D5470:

- No real conditions, use two Cu bar
- No characterization of adhesives or solders
- No in-situ measurement of BLT
- Samples are tested under high pressure

Characterization of Thermal Interface Materials

Fraunhofer

m) MicroMaterialsCenter

The New Platform with different Modules

TIMA Platform

1	Water cooler			(
2	Incline sensors	30 arcsec resolution		7
3	LVDT Distance mester	1 μm resolution		Incline sensor
4	Load cell	± 200N		
6	2 axes- goniometer	30 arcsec resolution		Incline sensor
6	Stepper motor	0,25µm steps		
7	case	PMMA	\rightarrow Universal platform for	or different r

Berliner Nanotest und Design GmbH

*M*icroMaterialsCenter

Standard characterization of TIMs

Tool for assembling of thermal adhesives

- Characterization under real conditions
- Different configurations possible depending on desired contact partners, i.e. Al, Cu or Si
- Measuring the actually heat flux
- Design allows to incorporate analysis by FIB, SEM and/or EDX
- Rapid test method using a test socket
- Curing at high temperature is possible T=180°C
- Low cost testing (test socket < 50€)</p>
- In situ measurement of BLT and pressure

NANOTEST Berliner Nanotest und Design GmbH

Assessment of Accuracy and Parasitic of TIMA Tester

Total Error Evaluation

Berliner Nanotest und Design GmbH

ENAS

Accuracy of temperature measurement

NTC-Sensors:

- Adapted design (Cylinder, 1mm diameter)
- Non-linear behavior (should be calibrated for the range of use)

TTC-Sensors:

- Adapted design (flat, full area heater)
- Diode as T-sensor, linear behavior

High precision calibration chamber

- ≻ -20°C < T < 175°C</p>
- Avg. heating rate 10 K/min
- Avg. cooling rate 5 K/min
- Accuracy < 0.01 K</p>

multiple parallel measurement

Reproducibility of the measurement

One TIM was measured 10-times under:

- Same BLT
- Same pressure
- Same temperature
- In different times
- \rightarrow Variation < 5%

Interesting results measured by standard modules

What can be measured by these modules?

Standard characterization of greases

Fraunhofer

m MicroMaterialsCenter

Standard characterization of adhesives

m) MicroMaterialsCenter

Influence of temperature on thermal conductivity

→ 25 differences at thermal conductivity between 50°C and 110°C \rightarrow Unfortunately lower performance at higher temperature

Thermal resistance as function of pressure

- Three thermal greases were measured under different pressures 100 kPa...
 700kPa
- Rth=f(p)
- d=f(p)

Further options:

- Pressures from 0 to 2 MPa are possible
- Bond line thickness as function of pressure at different temperatures

NANOTEST Berliner Nanotest und Design GmbH

MicroMaterialsCenter

Influences of curing conditions on thermal conductivity of thermal adhesives

MicroMaterialsCenter

Further module

accelerated in-situ measurement of reliability and aging behavior of thermal interface materials

ENAS

Background

MicroMaterialsCenter

Measuring principle (Patented)

Fraunhofer

ENAS

m

MicroMaterialsCenter

Schematic of the long term testing

Further module

Characterization of highly conductive TIMs

Silver Sintering for High-Lambda Connection

Berliner Nanotest und Design GmbH

MicroMaterialsCenter

Microstructure of Silver - Die Bond, Sintered

Low T,p,t sintering \rightarrow highly porous

High T,p,t sintering

→ continous µ-structure, grain formation

 \rightarrow Different process parameters (T, p, t) produce different microstructrures

 \rightarrow Technology development necessary

Oppermann, Hutter, Klein, IZM Berlin

Characterization: High – Lambda Test stand

Specimen, used as in real die-bonding process with Ag-metalisation, d by x-sect

Vacuum chamber for thermal char (1 mbar)

Schematic for high-Lambda Tester (Cu meas. by laserflash)

T along Cu-bars of Specimen

Accuracy $< \pm 5 \%$,

equivalent to ± 10 W/mK at possible 420 W/mK for pure Ag

Correlation to **simulation**

Influences of sintering forces on thermal and mechanical properties of sinter silver

Sintered at 270°C

Sample #	Sintering force[N]	Shear force[N]	BLT [μm]	Area [mm²]	λ [w/mK]	λ [w/mK]
1	60	109	64	1,96	175	180±10
2	00	107	120	2,13	185	
3	00	150	53	2,20	n.a.	280±20
4	90	112	95	2,20	280	
5	120	240	74	2,77	390	- 360±30
6	120	193	91	2,41	330	

Higher sintering forces lead to:

- \rightarrow higher thermal conductivity
- \rightarrow higher shear forces

due to densification and microstructure evolution

NANOTEST Fraunhofer

Further module

High Accuracy Characterization Module

Characterization of small effects e.g. surface modification by nanotechnologies

Nanosponge Technology

Apply on Si-die on wafer level

Plating Alloy

Oppermann, Wunderle, IZM Berlin

Nanosponge Structure

→ open porous → **15 nm** pores → 20 %vol Au

FIB image of the nano-sponge Au-structure

Oppermann, Wunderle, IZM Berlin

Thermal Enhancement by Nanosponge

hi Au density \rightarrow hi- λ large contact area \rightarrow low Rth,0

Thermal Enhancement Potential					
Compressibility	Conforming to filler particles reduces R _{th,0} at interfaces, excess adhesive can be aborbed <> point contact				
Roughness	Increased mechanical interlocking for Adhesives on Au Surfaces (few 10 nm are enough)				
Surface Energy	Interdiffusion possible for contact formation (nano-scale effect)				
Structure tuneable	mechanical properties tuneable				

Most Accurate Characterization Method: Si-TIM-Si

Berliner Nanotest und Design GmbH

Summary

Thank you very much for your attention! Time for questions?

Some of this work was carried out within the BMBF Project "CharTIM"

This funding is gratefully acknowledged

Contact: aboras@nanotest.org

