

Fakultät Mathematik und Naturwissenschaften, Professur für Physikalische Chemie, Mess- und Sensortechnik

Konstruieren mit DNS

13th LEIBNIZ CONFERENCE OF ADVANCED SCIENCE - NANOSCIENCE 2012 -Lichtenwalde 26. - 27. April 2012

Michael Mertig

Physikalische Chemie, Technische Universität Dresden

&

Kurt-Schwabe-Institut für Mess- und Sensortechnik e.V. Meinsberg

michael.mertig@tu-dresden.de

Die Watson-Crick-Basenpaarung

Nur A-T und C-G Basenpaarung erlaubt.

Design von künstlichen Strukturen

N.C. Seeman Nucleic acid junctions and lattices J. Theor. Biol. 99, 237-247 (1982)

DNA origami

By courtesy of S.M. Douglas, Harvard University

DNA origami

P.W.K. Rothemund, Nature 440, 297-302 (2006)

- 1. Origami nanotubes
- 2. Templated nanotube formation ¹
- 3. Chengde Mao' tubes ^{2,3}
- ¹ O. I. Wilner, R. Orbach, A. Henning, C. Teller, O. Yehezkeli, M. Mertig, D. Harries, I. Willner Self-assembly of DNA nanotubes with controllable diameters Nature Communications 2 (2011) 540
- ² H.P. Liu, Y. Chen, Y. He, A.E. Ribbe, C.D. Mao Approaching the limit: Can one DNA oligonucleotide assemble into large nanostructures? Angewandte Chemie, International Edition 45 (2006) 1942-1945
- ³ T. L. Sobey, S. Renner, F. C. Simmel Assembly and melting of DNA nanotubes from single-sequence tiles Journal of Physics Condensed Matter 21 (2009) 034112

- 1. Origami nanotubes
- 2. Templated nanotube formation ¹
- 3. Chengde Mao' tubes ^{2,3}
- ¹ O. I. Wilner, R. Orbach, A. Henning, C. Teller, O. Yehezkeli, M. Mertig, D. Harries, I. Willner Self-assembly of DNA nanotubes with controllable diameters Nature Communications 2 (2011) 540
- ² H.P. Liu, Y. Chen, Y. He, A.E. Ribbe, C.D. Mao Approaching the limit: Can one DNA oligonucleotide assemble into large nanostructures? Angewandte Chemie, International Edition 45 (2006) 1942-1945
- ³ T. L. Sobey, S. Renner, F. C. Simmel
 Assembly and melting of DNA nanotubes from single-sequence tiles
 Journal of Physics Condensed Matter 21 (2009) 034112

- 1. Origami nanotubes
- 2. Templated nanotube formation ¹
- 3. Chengde Mao' tubes ^{2,3}
- ¹ O. I. Wilner, R. Orbach, A. Henning, C. Teller, O. Yehezkeli, M. Mertig, D. Harries, I. Willner Self-assembly of DNA nanotubes with controllable diameters Nature Communications 2 (2011) 540
- ² H.P. Liu, Y. Chen, Y. He, A.E. Ribbe, C.D. Mao Approaching the limit: Can one DNA oligonucleotide assemble into large nanostructures? Angewandte Chemie, International Edition 45 (2006) 1942-1945
- ³ T. L. Sobey, S. Renner, F. C. Simmel Assembly and melting of DNA nanotubes from single-sequence tiles Journal of Physics Condensed Matter 21 (2009) 034112

Hexagon-lattice DNA nanotubes

SEM of hexagon-lattice DNA nanotubes

Branching of the hexagonal lattice

RCA-directed growth of DNA nanotubes

SEM of templated DNA nanotubes

Why single nanotubes?

What controls the tube diameter?

Canham-Helfrich-Evans Equation

$$F_{\text{bending}} = 2\pi R l \times \frac{1}{2} \kappa \left(\frac{1}{R} - \frac{1}{R_0}\right)^2 \qquad F_{\text{binding}} = -l\varepsilon$$

R* ~ к/ε

When R > R* tube formation is favored

- *R* sheet's radius of curvature
- R_0 spontaneous radius of curvature of the sheet
- $\ensuremath{\mathcal{K}}$ bending modulus of the cylinder
- $\boldsymbol{\mathcal{E}}$ (net) cohesive free energy per unit length

Short hexagons

Tetragon-lattice DNA nanotubes

 $F = F_{binding} + F_{bending}$

Diameter distributions of the DNA nanotubes

- 1. Origami nanotubes
- 2. Templated nanotube formation ¹
- 3. Chengde Mao' tubes ^{2,3}
- ¹ O. I. Wilner, R. Orbach, A. Henning, C. Teller, O. Yehezkeli, M. Mertig, D. Harries, I. Willner Self-assembly of DNA nanotubes with controllable diameters Nature Communications 2 (2011) 540
- ² H.P. Liu, Y. Chen, Y. He, A.E. Ribbe, C.D. Mao Approaching the limit: Can one DNA oligonucleotide assemble into large nanostructures? Angewandte Chemie, International Edition 45 (2006) 1942-1945
- ³ T. L. Sobey, S. Renner, F. C. Simmel Assembly and melting of DNA nanotubes from single-sequence tiles Journal of Physics Condensed Matter 21 (2009) 034112

What is known so far?

C. Lin, Y. Ke, Y. Liu, M. Mertig, J. Gu, H. Yan Functional DNA nanotube arrays: Bottom-up meets top-down Angewandte Chemie International Edition 46, 6089 (2007)

TEM of single-stranded DNA nanotubes

Conclusions

- DNA origami nanotube
- Two different single-stranded DNA nanotubes
- Defined and narrow diameter distributions
- Mechanism 1: Intrinsic curvature
- Mechanism 2: Templating by a seed strand
- Mechanism 3: Intrinsic chirality
- Balance of bending and binding energy
- Tubular templates for organization of nanoparticles

Acknowledgements

@ <u>TU Dresden</u>	@ <u>ASU</u>
 Awadesh Dwivedi 	 Chenxiang Lin
 Philipp Fuchsenberger 	•Yan Liu
•Nora Haufe	•Hao Yan
•Anja Henning	
 Matthew Wiens 	

@ <u>Hebrew University</u>•Ofer Wilner•Itamar Willner

<u>Funding</u> •DFG/NSF: Materials Science Network •GK DFG 1401/1-2

