Lattice mismatched semiconductor integration for Si micro- & nanoelectronics

innovations for high

performance microelectronics

Compliant Ge nanoheteroepitaxy on patterned Si(001)

Thomas Schroeder

IHP Frankfurt / Oder Im Technologiepark 25 15236 Frankfurt (Oder) Germany

BTU Cottbus Konrad-Zuse-Str. 1 03046 Cottbus Germany

Nanoscience, Lichtenwalde, Germany (2012)

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany

www.ihp-microelectronics.com

Overview

- Motivation: Mobile data communication
 Electronic-Photonic ICs: Need for ultrafast Ge photodetectors ...
 - Advanced heteroepitaxy approaches for nano-objects Nanocontact heteroepitaxy: use of compliant substrate effects...
 - Complex top-down processing with nano-growth control optical litho and selective CVD processes on 8"Si tools...
 - Hunting the "myth" of compliant substrate effects the example of the Ge / Si nanostructures as a case study...
 - Summary: theory of nanoheteroepitaxy is oversimplification growth mask effects, shape stabilities, microstrain effects etc.

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany

www.ihp-microelectronics.com

© 2012 - All rights reserved

Merging electronics and photonics on Silicon

Look inside an Electronic-Photonic Integrated Circuit...

High performance, high speed photodetectors

become bottleneck in RoF data transmission...

Motivation Ge Micro- and Nanocluster photodetector (PD) arrays... **Top electrode** Si p Ge **Bottom electrode** n Si/Ge/Si p-i-n photodetector Si SiO₂

High-speed and high-power photodetector is a must

Ge photodetectors within Si CMOS technology

- \rightarrow Band gap around telecommunication wavelength
- \rightarrow Monolithic integration in Si CMOS fab is feasible
- → Ge Micro- & Nanocluster PD array: high speed & performance

Motivation Defect-free Ge Micro- & Nanoclusters by compliance

Nanoscience: Defect-free Ge PD arrays by compliant growth

- → Defects act as scattering, recombination, trapping centres
- \rightarrow Interface as well as threading dislocations problematic
- → Defect-free Ge micro- and nanocluster arrays by compliance

Overview

Motivation: Mobile data communication
 Electronic-Photonic ICs: Need for ultrafast Ge photodetectors ...

- Advanced heteroepitaxy approaches for nano-objects Nanocontact heteroepitaxy: use of compliant substrate effects...
- Complex top-down processing with nano-growth control optical litho and selective CVD processes on 8"Si tools...
- Hunting the "myth" of compliant substrate effects the example of the Ge / Si nanostructures as a case study...
- Summary: theory of nanoheteroepitaxy is oversimplification growth mask effects, shape stabilities, microstrain effects etc.

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany

www.ihp-microelectronics.com

© 2012 - All rights reserved

Nanocontact approaches – Aspect ratio trapping

Selective Ge growth

- \rightarrow Threading dislocations trapped inside SiO₂ trench
- \rightarrow Stacking faults in Ge after coalescense
- \rightarrow Lattice plane tilt

J.-S. Park et al., Appl. Phys. Lett. 90, 052113 (2007) P. Zaumseil et al., J. Appl. Phys. 106, 093524 (2009)

Nanocontact approaches – Epitaxial lateral overgrowth

M. Miyao et al., Appl. Phys. Express 2, 045503 (2009) T. Tanaka et al., Appl. Phys. Express 3, 031301 (2010)

Advanced heteroepitaxy approaches Nanocontact approaches – III-V nanowires on Si(001)

→ Very small cross section → efficient lateral relaxation → Freedom to combine lattice mismatched materials

M. Heurlin et al., Nano Lett. 11, 2028 (2011) E.P.A.M. Bakkers et al., MRS Bulletin 32, 117 (2007) M. T. Björk et al., Appl. Phys. Lett. 80, 1058 (2002)

Nanoheteroepitaxy based on compliant substrate effects

- \rightarrow Theory developed by various authors:
- H. Richter et al.: J. Appl. Phys. 75, 657 (1994)
- > Zubia et al.: J. Appl. Phys. 85, 6492 (1999)
- \rightarrow Advanced heteroepitaxy process:
- > Free-standing Si nanostructures
- Selective Ge growth
- \rightarrow Nanocontact heteroepitaxy features:
- > Glide out of defects from epi-layer
- > 3D strain relief mechanisms active
- Limited to nanocontact area

Nanoheteroepitaxy based on compliant substrate effects

- \rightarrow Theory of Nanoheteroepitaxy:
- Compliance: misfit strain partitioning between substrate & film nanostructure
- Strain level in epi-film below defect nucleation energy for plastic relaxation
- In other words, vision is to completely avoid defects in lattice mismatched film

Nanoheteroepitaxy based on compliant substrate effects

Challenge

→ The larger the misfit, the smaller pillars required for compliance

→ Mismatch of 4.2% in the Ge/Si(001) requires feature of ~50nm and less

Y.H. Lo et al., Appl. Phys. Lett. 59, 2311 (1991) A. Fischer & H. Richter, J. Appl. Phys. 75, 657 (1994) D. Zubia et al., J. Appl. Phys. 85, 6492 (1999)

Overview

- Motivation: Mobile data communication
 Electronic-Photonic ICs: Need for ultrafast Ge photodetectors ...
- Advanced heteroepitaxy approaches for nano-objects Nanocontact heteroepitaxy: use of compliant substrate effects...

- Hunting the "myth" of compliant substrate effects the example of the Ge / Si nanostructures as a case study...
- Summary: theory of nanoheteroepitaxy is oversimplification growth mask effects, shape stabilities, microstrain effects etc.

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany

www.ihp-microelectronics.com

© 2012 - All rights reserved

Experimental Scientific approach : 8" Si BiCMOS prototyping line

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany

www.ihp-microelectronics.com

Experimental IHP Technology (Tillack) & Material (Schroeder) Department

Lithography (J. Bauer)

Ge RP-CVD (Y. Yamamoto)

Scanning electron microscopy (G. Morgenstern)

Transmission electron microscopy (A. Schubert)

Synchrotron Studies – ESRF (G. Kozlowski, P. Zaumseil)

Raman Spectroscopy (G. Kozlowski)

Finite Elelemnt Method simulation (G. Kozlowski)

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany

www.ihp-microelectronics.com

Overview

- Motivation: Mobile data communication
 Electronic-Photonic ICs: Need for ultrafast Ge photodetectors ...
- Advanced heteroepitaxy approaches for nano-objects Nanocontact heteroepitaxy: use of compliant substrate effects...
- Complex top-down processing with nano-growth control optical litho and selective CVD processes on 8"Si tools...
- Hunting the "myth" of compliant substrate effects the example of the Ge / Si nanostructures as a case study...
 - Summary: theory of nanoheteroepitaxy is oversimplification growth mask effects, shape stabilities, microstrain effects etc.

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany

www.ihp-microelectronics.com

 $\ensuremath{\textcircled{O}}$ 2012 - All rights reserved

Strain field investigation: Si nanostripes with SiO₂ mask

→ Strain in Si nanopillar prior to Ge growth
→ Oxide thickness dependent

Kozlowski et al., J. Appl. Phys., 110 (2011) 053509

Results and Discussion Strain field investigation:Si nanostripes with SiO₂ mask

- → Strain in Si nanopillar prior to Ge growth \rightarrow Oxide thickness dependent
- \rightarrow Signal dominated by TO₂ mode

Kozlowski et al., J. Appl. Phys., 110 (2011) 053509

Results and Discussion Strain field investigation – Ge/Si nanostripes

Results and Discussion Strain field investigation – Ge/Si nanostripes

- → Good fit to Equilibrium Crystal Shape
- → Misfit dislocation network at Ge/Si interface
- → Relaxed Ge growth...

Kozlowski et al., J. Appl. Phys., 110 (2011) 053509

Results and Discussion Strain field investigation – Ge/Si nanostripes

- \rightarrow Good fit to Equilibrium Crystal Shape
- → Misfit dislocation network at Ge/Si interface
- \rightarrow Relaxed Ge growth... with residual strain

Kozlowski et al., J. Appl. Phys., 110 (2011) 053509

Results and Discussion Compliance verification – Ge/Si structures on Si(001)

- \rightarrow Ge nanoclusters on ~50 nm wide Si nanopillars
- \rightarrow Diameter expected to trigger strain partitioning phenomenon

Advanced materials science characterization on the nano-scale: Structure and defects on the nano-scale by non-destructive XRD

 \rightarrow In-plane compressive \rightarrow SiO₂ growth mask

Results and Discussion Compliance verification – Ge/Si structures on Si(001)

Compliance verification – Ge/Si structures on Si(001)

(202) Bragg reflection – Strain in Si nanopillar

- \rightarrow In-plane compressive \rightarrow SiO₂ growth mask \rightarrow Dominant
- \rightarrow In-plane tensile \rightarrow epi-Ge \rightarrow CS effects \rightarrow Minor

Compliance verification – Ge/Si structures on Si(001)

(202) Bragg reflection – Strain in Si nanopillar

- \rightarrow In-plane compressive \rightarrow SiO₂ growth mask \rightarrow Dominant
- \rightarrow In-plane tensile \rightarrow epi-Ge \rightarrow CS effects \rightarrow Minor

SiO₂ growth mask limits the compliance of Si nanopillars

Compliance verification – Ge/Si structures on Si(001)

Kozlowski et al., Appl. Phys. Lett., 99 (2011) 141901

Main strain relaxation mechanism: plastic relaxation via MDs

- \rightarrow Misfit dislocations (MDs) at Ge / Si interface
- \rightarrow High quality symmetric Ge cluster

- \rightarrow Compliance limited by growth mask (Ge/Si on Si(001))
- \rightarrow Ge/Si structures without additional growth mask

Compliance verification – Ge/Si structures on SOI(001)

- → Compliance limited by growth mask (Ge/Si on Si(001))
- \rightarrow Ge/Si structures without additional growth mask
- \rightarrow Si islands on SOI substrate
- \rightarrow Selective growth triggered by patterning down to SiO_2

Results and Discussion Compliance verification – Ge/Si structures on SOI(001)

XRD (202)

\rightarrow Compliance observed \rightarrow Effect stronger for thinner Si islands

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany

www.ihp-microelectronics.com

Compliance verification – Ge/Si structures on SOI(001)

54 nm thick Si

Strain partitioning phenomenon within Nanoheteroepitaxy theory not yet sufficient to completely avoid defects.

Overview

- Motivation: Mobile data communication
 Electronic-Photonic ICs: Need for ultrafast Ge photodetectors ...
- Advanced heteroepitaxy approaches for nano-objects Nanocontact heteroepitaxy: use of compliant substrate effects...
- Complex top-down processing with nano-growth control optical litho and selective CVD processes on 8"Si tools...
- Hunting the "myth" of compliant substrate effects the example of the Ge / Si nanostructures as a case study...
- Summary: theory of nanoheteroepitaxy is oversimplification growth mask effects, shape stabilities, microstrain effects etc.

IHP Im Technologiepark 25 15236 Frankfurt (Oder) Germany

www.ihp-microelectronics.com

Summary

Mobile data communication: Ultrafast, high performance Ge PD arrays of interest...

Characterization on the nano-scale Advanced facilities needed for modern materials science...

Growth control on nano-scale compliance proved; limits due to micro-strain fluctuations...

Thanks for your attention

...and thanks for inviting us !