

Wi-Fi Enabled Sensors

Hans van Leeuwen,

VP Semiconductors

Hans@rovingnetworks.com

Los Gatos, CA

www.rovingnetworks.com

Company Background

- Founded in 2000
 - Wireless expertise
 - Engineering and manufacturing in Silicon Valley, Singapore, Philippines, Taiwan and India
- Private, profitable Company
- Focused on wireless applications
 - Core technology is compact, intelligent, low-power Bluetooth and low power WiFi modules
 - Provide complete HW and SW solutions
 - Differentiate on simple to use products and excellent support
 - Willing to customize our product for customers
 - Focus on sensor and tracking devices
 - 802.11 b/g System on Chip (SOC)

Roving Networks provides complete Bluetooth and WiFi solutions that turn customer's products into wireless solutions.

Convergence and Change

The World Wide Web

Wi-Fi is a Disruptive Technology

- Wi-Fi is everywhere
- Complementary to wireless sensors applications

WTRS Wireless Sensor Network Technology Report projects strong market growth in the market for Low Power WiFi chipsets used in sensor applications to reach 322% CAGR, over the 2008 to 2013 period. 2010 Embedded Market Study

If wireless, what wireless interfaces does your current embedded project include?

ESS

FOR LESS

802.11 Radio Protocol

- Established / proven technology
 - IEEE standard, multiple modulation techniques
 - Wealth of products and expertise available
 - Complex proven large node networks
- Provides interoperability between tools, devices, and vendors
 - TCP/UDP/HTML/DLNA

- Pervasive infrastructure
 - Access points everywhere
 - Many companies developing Wi-Fi products
 - Cities, companies and businesses providing coverage

Examples of "cool" Wi-Fi Products

- Bread Crumb Sensor
 - GPS + Temperature + other sensors
 - Battery powered device in a plane, car, package, etc...
 - GPS data and sensors is sampled at regular intervals or interesting conditions
 - Looks for an open or known Wi-FI access points to upload data
 - Examples: delivery vans, planes, rental cars, Asthma breather
- Asset Tracking Sensor
 - RSSI + Accelerometer + Temperature + other sensors
 - Multiple Wi-Fi access points used to triangulate location
 - Many corporation and campuses already have Wi-Fi in place
 - Use RFID or a call button to activate
 - Example: Elderly Assisted Care Facilities, Freight, portable equipment locator
- Home hobbyist Sensor
 - Temperature, humidity, moisture, etc...
 - Sensors spread across a building, campus or city or country
 - Centralized server application collects data over for email alerts, reporting
 - Examples: Wine cellars, saltwater fish tanks, basements

Low power (1/2)

How can a WiFi sensor operate multiple years on a single battery?

- Normally a WiFi device uses a few Watt and is designed to transport mega bits in seconds
- ZigBee, Z-wave and other wireless sensor networks use mW's and are designed to transport a few hunderd bits in seconds,

Low Duty Cycle + Fast network access + Low Sleep current + battery power management → multiple year life time

(during sleep the sensor interface must be low power as well)

Low power (2/2)

• The questions are

- 1. What battery?
- 2. Duty Cycle? How much MCU work?
- 3. Sleep current?

			_							_	_			_	_		-	-	-	_	-
Example	0.08	mW		is	4.47	year	on 2	2-AA	A's												
with 4 ev																					
	mA											ms									
ТΧ	200											25									
RX	35											100									
Wake-up	40											250									
SLEEP	0.005mA	۱.								always											

- Battery lifetime would be >7 years on 2 AAA batteries with a 1 sample per hour reading. (for instance AMR)
- 2. A sensor device can last for at least 2 years, reading every 2 minutes.

G2C547 Architecture

- Full TCP/IP stack, IEEE802.11b/g, ISO24730-2
- Consumes 5uW when asleep, 90mW with WI-FI enabled, 12ms time to get connected
- RFID and battery powered sensor applications
- Sensor Interface for temperature humidity, accelerometers, motion, security seals and shock sensors.
- Incorporates a 32-bit processor clocked at 44Mhz and built with up to 15 GPIOs for SPI master, SDIO client and UART interfaces.

G2C547 Architecture

New Class of Wi-Fi Radios

- There has been significant technology advancements in the last few years
 - Order of magnitude reduction in power consumption
 - < 10 microwatts in (active) sleep mode
 - < 100 milliwatts while connected</p>
 - < 12ms to connect</p>
 - Small, integrated solutions
 - Single chip SOCs / Pre-certified modules
 - Complete 802.11 networking products (TCP/HTTP/UDP/DNS/DHCP/TELNET/FTP)
 - Integrated analog sensor inputs, battery management

