

1

Nano Laser & Random Laser: Potential für neue Sensoren

Bernd Wilhelmi Konsultant für IZFP and LOD Ziegenhainer Str. 74, D-07749 Jena be.wilhelmi@t-online.de

LIFIS_SENSOREN, 07.10.2010

Nano Laser & Random Laser: Potential für neue Sensoren

INHALT

Einführung: Märkte für Optische Nano Sensoren

- 1. Nano Wellenleiter und Fasern als Basis für empfindliche Sensoren
- 2. Nano Laser und ihr Einsatz in Sensoren
- 3. Random Laser als Sensoren

Zusammenfassung und Ausblick

Marktvolumen optische Technologien

Geschätztes Gesamtmarktvolumen 2013: US\$ 500 Mrd., CAGR: 16%

- Der größte Anteil von ca. 60% des Gesamtmarktes entfällt auf die Bereiche Lichtquellen, Display und optische Sensorik
- Geschätzte Marktvolumina 2005:
 - Lichtquellen (Laser, LED, Projektion, Automobil, Beleuchtung): US\$ 25,0 Mrd.
 - **Display**: US\$ 40,0 Mrd.
 - optische Sensorik: US\$ 16,0 Mrd. [Sensorik gesamt US\$ 43,2 Mrd.]
 - Solarenergie: US\$ 8 Mrd.

LIFIS_SENSOREN, 07.10.2010

Wilhelmi: Nano & Random Laser: Potential für neue Sensoren

Source: University of Arizona, Office of Economic Development

Einführung

Wachstumsmarkt opt. Sensoren: Gründe für Wachstum

Market Pull:

Branchen von Großanlagen über KFZ und IT bis Individual Health Care

- + Intelligente technische Systeme
- + Kontakt mit Umgebung ("Augen")
- + Selbstüberwachung von Systemen
- + Vermeidung von Havarie & Stillstand
- + ZfP, SHM
- + Reduzierung von Diagnose & Service
- + Erhöhung Zuverlässigkeit und Lebensdauer
- + Integration, Miniaturisierbarkeit
- + Reduzierung Energiebedarf & Kosten

LIFIS_SENSOREN, 07.10.2010

Nano Laser & Random Laser: Potential für neue Sensoren

INHALT

Einführung: Märkte für Optische Nano Sensoren

- 1. Nano Wellenleiter und Fasern als Basis für empfindliche Sensoren
- 2. Nano Laser und ihr Einsatz in Sensoren
- 3. Random Laser als Sensoren

Zusammenfassung und Ausblick

Ziele: integrabel, robust, zuverlässiger, empfindlicher,

LIFIS_SENSOREN, 07.10.2010

Nutzung von Erfahrungen

Vorbildtechnologien

Nano Wellenleiter

- + Halbleiterelektronik
- + Dünnschichtoptik
- + Halbleiter Laser

Nano Fasern

- + IT, Monomode-Fasern
- + opt. Nano Mikroskopie
- + opt. Nano Fallen

LIFIS_SENSOREN, 07.10.2010

C B T WILHELMI

Nano Fasern: Vorbild IT (Modenfilter)

LIFIS_SENSOREN, 07.10.2010

Wellenleiter: Schwache Führung/Leitung

LIFIS_SENSOREN, 07.10.2010

Wellenleiter: Störung der Leitung *h* = 100nm $\lambda = 422$ nm E/E_{LR05} $n_{\rm s}$ =1.49, $n_{\rm f}$ =1.50, $n_{\rm c}$ =1.49, *N*=1.490195 h_{cutoff}=0, *h*_{eff}=5672nm inside guiding $G_{\rm f}$ =3.67% Em 0.95 $E2_{m}$ $n_{\rm s}$ =1.49, $n_{\rm f}$ =1.50, $n_{\rm c}$ =1.4895 *№*=1.490046 0.9 *h*_{cutoff}=85.3nm, *h*_{eff}=7505nm .0.873029_{0.85} 100 150 300 350 400 50 250 200.400_ 0_ inside guiding $G_{\rm f}$ =2.84% $\mathbf{x}_{\mathbf{m}}$

X/nm

LIFIS_SENSOREN, 07.10.2010

Wilhelmi: Nano & Random Laser: Potential für neue Sensoren 10

Nano Wellenleiter und Fasern als Basis für empfindliche Sensoren Wellenleiter: Störung der Leitung

Nano Fasern als Basis für empfindliche Sensoren Nano Faser: Störung der Leitung

Grundmode der Faser $n_{f}=1.5$, $n_{c}=1$, Durchmesser $2\rho=300$ nm, für $\lambda=423$ nm. N=1.254Inside Guiding: 83% **Outside Guiding: 17%**

LIFIS_SENSOREN, 07.10.2010

Wellenleiter: Messung von N mit Interferometer

СВТ

WILHELM

Wellenleiter: Messung von n_c aus cut-off Wellenlänge

LIFIS_SENSOREN, 07.10.2010

Wellenleiter: Messung von n_c aus cut-off Wellenlänge

LIFIS_SENSOREN, 07.10.2010

Fazit:

Nachweisgrenze für Veränderungen der Brechzahl an optischen Wellenleitern und Fasern: $\Delta n \le 10^{-7}$

Nano Wellenleiter und Fasern als Basis für Sensoren Wellenleiter und Fasern mit Verstärkungsführung (gain guiding)

Führung ist auch in optischen Wellenleitern oder Fasern ohne Brechzahl-Führung möglich!

Komplexe Brechzahl: $n = n_{re} + i \cdot n_{im}$,

$$E(z) = E \cdot e^{ik_0 \cdot n_{re} z + \Delta \alpha z} = E \cdot e^{i\frac{2\pi \cdot z}{\lambda_0}} [n_{re} + i \cdot n_{im}],$$
$$n_{im} = -\frac{\lambda_0 \cdot \Delta \alpha}{2\pi}, \quad \Delta \alpha = \frac{g}{2}$$

 $\Delta \alpha$: Amplitudenverstärkungskoeffizient, $\Delta \alpha = g/2$

g: Leistungsverstärkungskoeffizient

LIFIS_SENSOREN, 07.10.2010

Wilhelmi: Nano & Random Laser: Potential für neue Sensoren

 \mathbf{h}

Nano Wellenleiter und Fasern als Basis für Sensoren

Wellenleiter und Fasern mit Verstärkungsführung (gain guiding)

Darstellung der komplexen Δn , $\Delta \alpha$ Ebene

1. In üblichen Faserlasern ist $\Delta \alpha$ zu klein

2. Das rot umrahmte Gebiet kann mit organischen Systemen und Halbleitern erreicht werden

A. Siegman, 2003

LIFIS_SENSOREN, 07.10.2010

Nano Laser & Random Laser: Potential für neue Sensoren

INHALT

Einführung: Märkte für Optische Nano Sensoren

- 1. Nano Wellenleiter und Fasern als Basis für empfindliche Sensoren
- 2. Nano Laser und ihr Einsatz in Sensoren
- 3. Random Laser als Sensoren

Zusammenfassung und Ausblick

Nano Laser und ihr Einsatz in Sensoren

Variety of nano lasers:

- 1. Scattering particles resonator, $d < \lambda$, N. M. Lawandy et al. 1995 [Nature 368,436]
- 2. Small platelets or mirrors resonator, $d < \lambda$
- 3. Guided wave r. d < λ, e.g., guiding fiber or wire, evanescent wave, e.g., F. Quochi, 2010, [J. Opt. 12, 024003, 11p.]
- 4. Very short resonator, L< λ
- 5. SPASER, Surface Plasmon Amplification, M. A. Noginov et al. 2009 [Nature 460, 1110-1112]
- 6. LC r., d & L < λ , resonator build up of lumped C & L, Ch. Walther et al. 2010 [Science, 327, 1495-1497]

LIFIS_SENSOREN, 07.10.2010

Nano Laser und ihr Einsatz in Sensoren

Resonators composed of two nano sources for feedback

- Simplest case no index guiding
- feed back by reflection or scattering at both ends (small spheres)

resonator length: $L >> \lambda$, radius $a < \lambda$, excitation field: E_0 : (pol. along *y*) wavelength: λ Coupling strength [dimension: length]: $/=[2\pi/\lambda]^2 \cdot [(n^2-1)/(n^2+2)] \cdot [a^3]$, $n = n_s/n_{cre}$

• Surrounding: gain medium:

refractive index n_{cre} amplitude gain coefficient (1/2) $\cdot g$

LIFIS_SENSOREN, 07.10.2010

/coupling strength $(l / L)^2 \cdot e^{g \cdot L} = \cdot 1 - -$

where the coupling length / is given by

$$= [2\pi/\lambda]^2 \cdot [(n^2-1)/(n^2+2)] \cdot [a^3]$$

Compare: equation for resonator with mirror reflectivity:

$$R = (//L)$$
:

 $R \cdot e^{g \cdot L} = \cdot 1$

B. Wilhelmi 1996,

Microwave & Opt. T. Lett 17, 111-115

LIFIS_SENSOREN, 07.10.2010

Resonators composed of two scattering particles. Fiber resonators

Laser threshold: threshold condition

Nano Laser und ihr Einsatz in Sensoren

Nano Laser: Guided wave r. *h*< λ, e.g., guiding fiber or wire, evanescent wave

Lasing crystalline oligophenyl nano fiber or nano "needle" (h \approx 100nm, L \approx 40 µm (up to about 100 µm), side-pumped)

Asymmetric wave guide: $n_{\rm s}$ =1.59, $n_{\rm f(re)}$ =1.70, $n_{\rm c}$ =1 gain coefficient: $g \le 700 \text{ cm}^{-1}$ refr. index (im. part): $n_{\rm f(im)} \le 2.4 \cdot 10^{-3}$

F. Quochi, J. Opt- 12 (2010) 024003 (11p)

LIFIS_SENSOREN, 07.10.2010

Nano Laser und ihr Einsatz in Sensoren

Einsatz von Nano Faser Lasern in Sensoren:

- C T B WILHELMI
- 1. Aufgaben wie übliche Fasersensoren, aber erhöhte Empfindlichkeit
 - Veränderungen der (komplexen) Brechzahl in der Umgebung
 - Streckung oder Biegung der Faser
- 2. Neuartige Aufgaben:
 - Direkter Nachweis von Nano Rissen durch Modenselektion

Nano Laser & Random Laser: Potential für neue Sensoren

INHALT

Einführung: Märkte für Optische Nano Sensoren

- 1. Nano Wellenleiter und Fasern als Basis für empfindliche Sensoren
- 2. Nano Laser und ihr Einsatz in Sensoren
- 3. Random Laser als Sensoren

Zusammenfassung und Ausblick

Random lasers, "Laser paint":

- 1. Random distribution of nano scatterers in homogeneous gain media, e.g., dielectric nano particles in liquid or solid dye solutions
- 2. Random distribution of nano particles (nano powder) which amplify and scatter radiation, e.g. semiconductor crystals,
- 3. Random distribution of complete nano lasers, e.g., of nano fiber lasers.

LIFIS_SENSOREN, 07.10.2010

Random Laser als Sensoren

Random Lasers

N. M. Lawandy 1994

Threshold behaviour of emission

Line narrowing above threshold

LIFIS_SENSOREN, 07.10.2010

Application of nano & random lasers

The generation of coherent or partially coherent laser radiation in nano structures has gained increasing attention for various scientific and applicative reasons:

- + on-chip data transfer,
- + localization and size measurement (MEMS)

Sargent, 2009

+ machine vision (completeness? Right components? Damages?)

N. M. Lawandy, 1994

LIFIS_SENSOREN, 07.10.2010

Random Laser als Sensoren

Application of nano & random lasers

- + Object identification
- + Object localisation

for:

- + military operations
- + rescue operations

N. M. Lawandy, 1994

Random Laser als Sensoren

Application of nano & random lasers

+ medical diagnostics down to sub cellular resolution, e.g., differentiation of cancerous and healthy tissue,

LIFIS SENSOREN, 07.10.2010

Wilhelmi: Nano & Random Laser: Potential für neue Sensoren

300

280

240

220

200

180

160

index 280

healthy

Nano Laser & Random Laser: Potential für neue Sensoren

INHALT

Einführung: Märkte für Optische Nano Sensoren

- 1. Nano Wellenleiter und Fasern als Basis für empfindliche Sensoren
- 2. Nano Laser und ihr Einsatz in Sensoren
- 3. Random Laser als Sensoren

Zusammenfassung und Ausblick

Ergebnisse und Ausblick

Resulte:

• Starker Marktsog aus diversen Branchen: IT, MEMS, Sensorik, Medizin, Gerätebau

- []-[] -

- Technology push für Nano Strahlungsquellen.
- Durchbruch steht noch aus (oder bevor?).
- Neue Lösungen werden angeboten.

Ausblick:

• Für Durchbruch müssen Ressourcen fokussiert werden!

- Schlüsselpunkte für Durchbruch: Zuverlässigkeit, Lebensdauer, Stabilität bei Massenproduktion!
- Niedrige Kosten für Investition und Betrieb (keine Kalibrierung, kein Service)!
- Vorbilder: Halbleiterelektronik, Halbleiterlaser für IT, MEMS, Mikroskopie
- Nutzen von Komponenten und Technologien der Vorbilder!

LIFIS_SENSOREN, 07.10.2010

Wilhelmi: Nano & Random Laser: Potential für neue Sensoren

 $^{\circ}$

Dank für wertvolle Diskussionen und Hilfe an Prof. Dr. J. Schreiber, IZFP Dresden, Prof. Dr. F. Lederer, FSU Jena, DP A. Hartung, IPHT Jena und Dr. H. Wenzel, FBH Berlin!

Ihnen danke ich für Ihre Aufmerksamkeit!

Fragen? Anregungen?

LIFIS_SENSOREN, 07.10.2010

Nano Laser und ihr Einsatz in Sensoren

Low threshold modes and hot spots in lasers with feedback by scattering nano particles: low-threshold modes (levy flights)

Example: one resonator composed of two scattering particles with largest distance L in between. I.e., highest gain and lowest threshold.

Observation: 2 "hot spots" near the boundary of gain medium emit maximum intensity of scattered laser radiation in all directions.

Aus: H. E. Türeci et al. 2008, Science, 320, 643-646

LIFIS_SENSOREN, 07.10.2010

Nano Laser und ihr Einsatz in Sensoren

Modification of random lasers by artificial arrangement of gain areas with and without scattering particles

EXAMPLE:

Hot spots appear only in the outer ring (or sphere shell) and in a certain angular (space angular) segment of the sample.

At high pump power:

- + many hot spots
- + strong far-field radiation
- + preference of certain angular segments in the far field

+ reduced inner losses of the random laser.

LIFIS_SENSOREN, 07.10.2010