

IBM Research – Zurich Laboratory

NEMS for ultra-low power logic applications

Christoph Hagleitner, Yu Pu, Daniel Grogg, Michel Despont

Leibniz Conference of Advanced Science: Sensorsysteme October 18-19, 2012

the evolution of information technology

IBM

outline

- IT technology landscape
- NEM switch for logic applications
- NEM switch design and fabrication
- NEM switch circuits

IT technology landscape: "more Moore" vs. "more than Moore"

adapted from a graphic in the Executive Summary of the ITRS, 2007 edition

4

Sensorsysteme 2012 - Christoph Hagleitner, IBM Research - Zurich Lab, hle@zurich.ibm.com

traditional miniaturization: CMOS challenges

power/energy challenge

- power density critical
- energy consumption too high for
 - autonomous devices
 - exascale computing
- leakage power approaches active power

functionality challenge

- sensors and actuators
- filters
- other analog functionality
- dormant devices (mostly Idle)
- devices in harsh environments
 - high temperature
 - radiation-hard

traditional miniaturization: NEM switch opportunities

power / energy efficiency

- zero leakage
- high on-current
- virtually infinite sub-threshold slope

harsh environments

- inherently radiation-hard
- high temperature devices shown

functionality challenge

- logic
- memory
- filters
- sensors
- actuators

cost pressure

- less lithography steps
- no implant

6

NEM switch design

in-plane (b) vs. out-of-plane (a) offers

- freedom of design
- symmetric layers
- scalability

curved vs. straight design offers

- robustness through control of the electric field
- scalability through single, sublithographic actuation gap for actuation and electric contact

-	-	-	
-	1		
	-		
_	_		

NEM switch fabrication

D. Grogg, EIPBN 2012

	-	-
	-	
	-	
-	-	

NEM switch fabrication

NEM switch characterization

- actuation voltage matches results predicted by simulation
- switch breakdown at >3x overdrive
- electrical contact @ 130ns

100	-	-	-
		_	_
	-		
	-		

NEM switch circuit design / modeling

I. device modeling

II. single device

III. device simulation

V. circuit simulation

NEM switch model

NEM switch scaling

- predicted minimum gap distance 3nm
- predicted contact area = $N^2/8$; (*N* is technology feature size)
- No. of channels = 5*contact area; (assuming 5 channels/nm²)

14

NEM switch energy @ device level

NEM switch circuit simulation

NEM switch logic styles: area optimization

1. Static logic, examples:

2. Transmission gate logic, examples:

NEM switch dynamic logic: energy optimization

(a) 2-input AND in CMOS

(b) 2-input AND in NEMS

- noise on input ports does NOT cause pre-charging
- bleeder is NOT needed, as NEMS has zero leakage

summary

- NEM switch opportunities
 - energy efficient computing
 - autonomous devices
 - sensors / actuators
- NEM switch challenges
 - scaling
 - contact reliability
- NEM switch circuits
 - virtually zero stand-by power
 - potentially outperforms CMOS in terms of energy efficiency
 - new logic styles and architectures

next steps

www.nemiac.eu

