Mapping and evaluation of visco-elastic properties on micro- and nanoscale by use of modified atomic force microscopy

Overview

Elastic and viscoelastic interactions

Kelvin-Voigt model

Elastic and viscoelastic characterization of materials on macro- and micro-scale

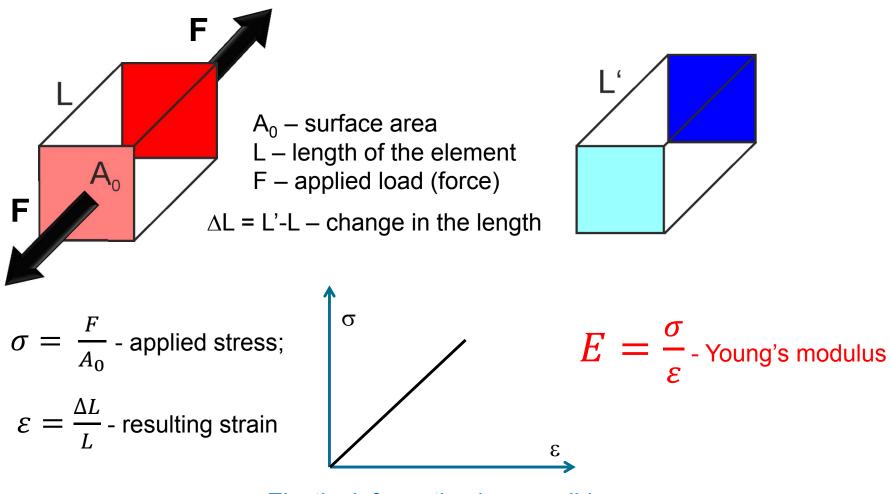
How can we use AFM high resolution methods?

Principle of atomic force acoustic microscopy (AFAM)

Tip-sample interactions, or where is the elastic and viscoelastic component?

What is also possible...

Elastic interaction

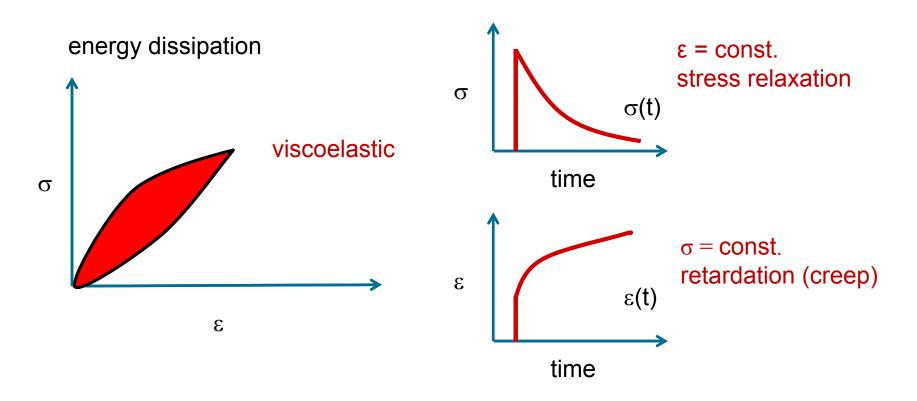


Elastic deformation is reversible

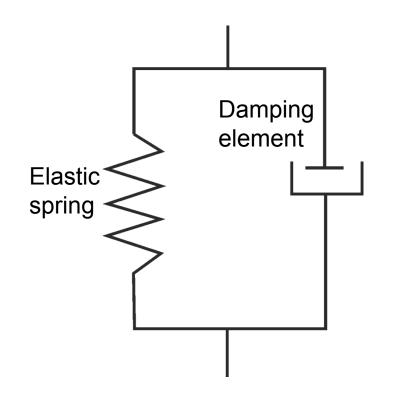
Viscoelasticity

Trademarks of viscoelasticity:

time dependence of material properties



Kelvin-Voigt model



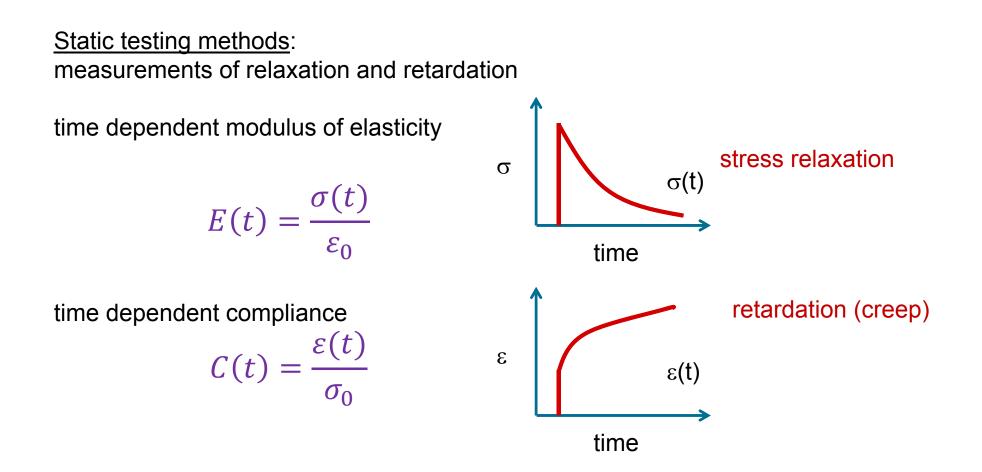
Kelvin-Voigt model describes the time dependence in the stress-strain change rate:

$$\sigma(t) = E\varepsilon(t) + \eta \frac{d\varepsilon(t)}{dt}$$

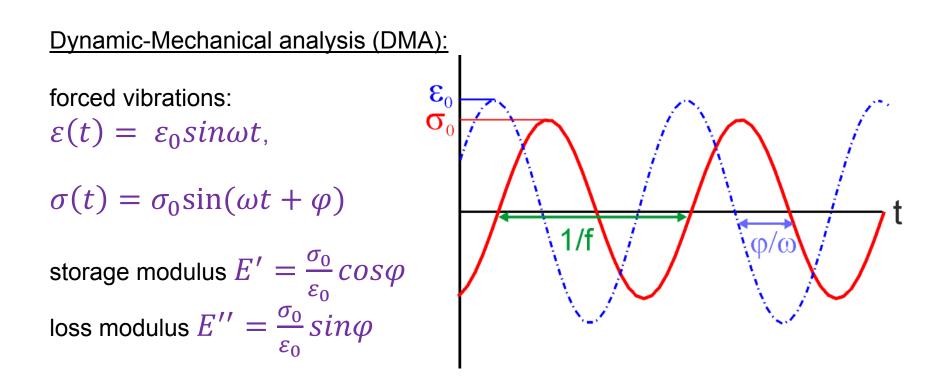
 η is the viscosity

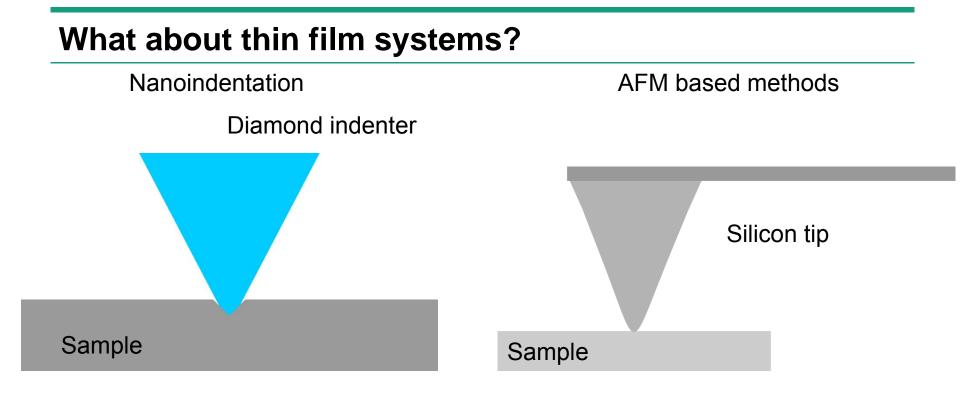
Static methods: $\varepsilon(t) = \frac{\sigma_0}{E} (1 - e^{-\lambda t})$, where $\lambda = \frac{E}{\eta}$ is rate of relaxation Dynamic methods: $E^{dyn}(\omega) = E' + iE''$, where E' and E'' are the storage and loss moduli

Methodology for bulk materials



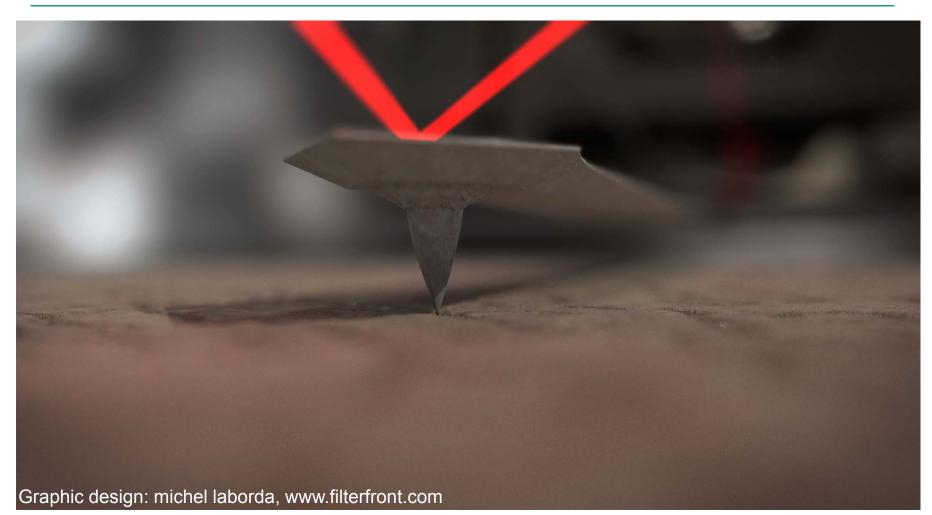
Methodology for bulk materials



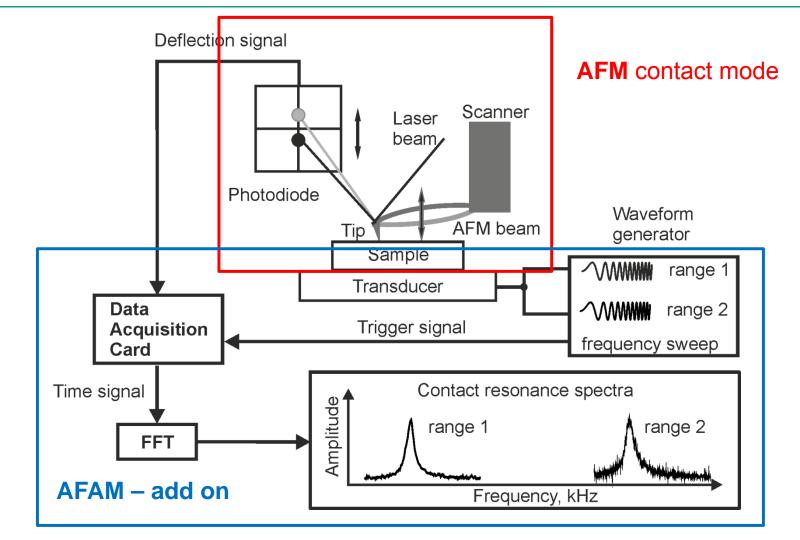


Force range: 100 nN – several mN Tip radius: 100 nm – 500 nm - $20 \mu \text{m}$ Film thickness limit : ca. 200 nmIndentation depth: 5 nm – $20 \mu \text{m}$ Force range: 1 nN – several μ N Tip radius: 10 nm – 150 nm – 500 nmFilm thickness limit : ca. 50 nm

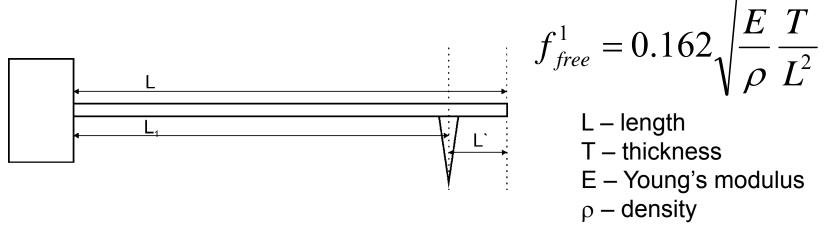
AFM methods



What is AFAM?



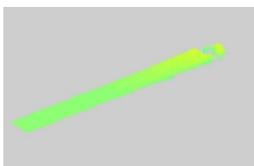
Free resonance frequencies of an AFM cantilever

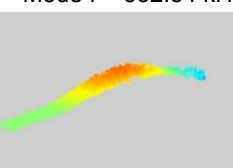


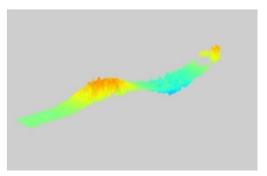
1st Mode f = 85.84 kHz

2nd Mode f = 532.84 kHz

3rd Mode f = 1486.1 kHz

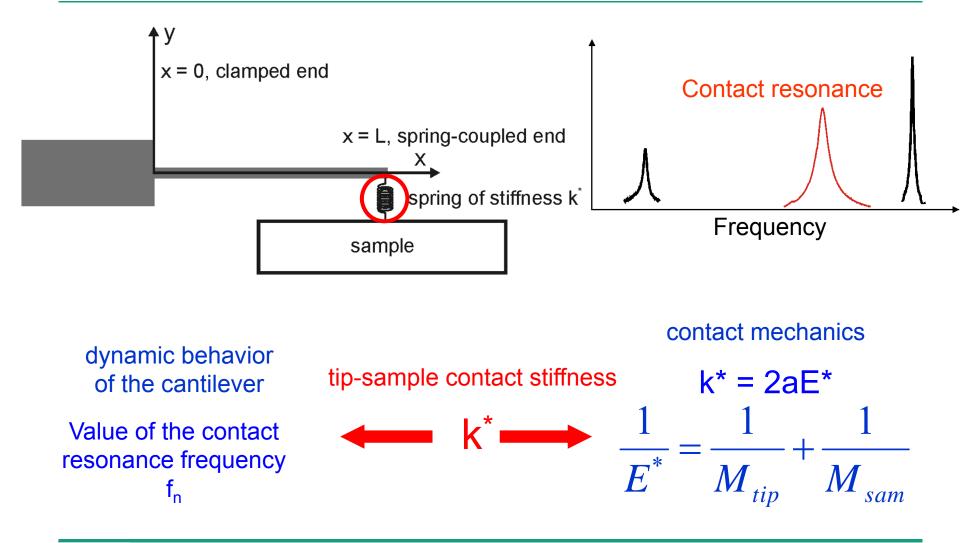




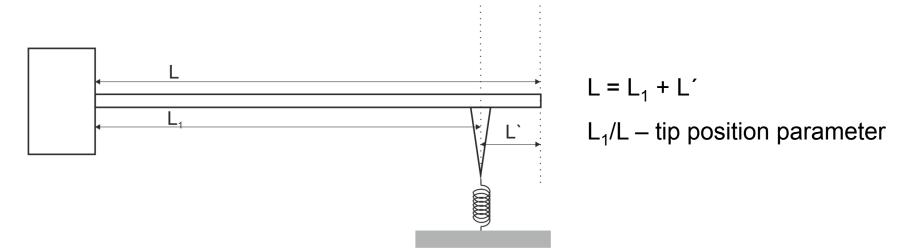


Cantilever vibrations measured at IZFP-Saarbrücken

Contact resonance frequencies of an AFM cantilever



Equations for k^{*} – simple model for elastic interactions



Contact resonance frequency f_n is a function of:

geometry and mechanical properties of the beam – parameter $\boldsymbol{\alpha}$

Free resonance frequencies $-f_{n(free)}$

Tip-sample contact stiffness – k^*

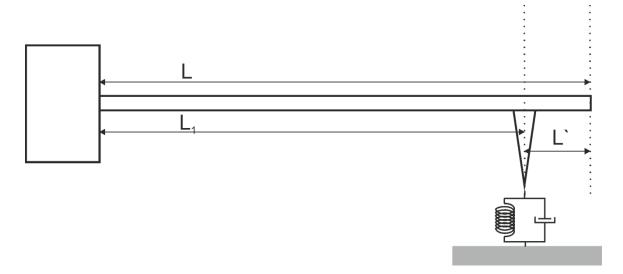
Tip-position parameter $-L_1/L = r$

Spring constant - k_c

Equations for k^{*} – the simple model

$$\frac{k^*}{k_c} \left[-\left(\cosh \alpha Lr \sin \alpha Lr - \sinh \alpha Lr \cos \alpha Lr\right) \right] \times \left(\frac{1 + \cos \alpha L(1 - r) \cosh \alpha L(1 - r)}{+ \left(\cosh \alpha L(1 - r) \sin \alpha L(1 - r)\right) - \sinh \alpha L(1 - r) \cos \alpha L(1 - r)} \right) \times \left(1 - \cos \alpha Lr \cosh \alpha Lr \right) = 2 \frac{\left(\alpha Lr\right)^3}{3} \left(1 + \cos \alpha L \cosh \alpha L \right)$$

Equations for k^{*} – simple model for viscoelastic interactions



Contact resonance frequency f_n is additionally a function of:

 $\chi = \frac{2\pi f_{n0}}{Q_{n0}}$ – damping of the cantilever in air Q_{n0} – Q factor of the free resonance frequency

 $Q_n - Q$ factor of the contact resonance frequency

Equations for k^{*} – simple model for viscoelastic interactions

$$\begin{aligned} & \left(k'+i\beta(\alpha Lr)^2\right)\left[-\left(\cosh\alpha Lr\sin\alpha Lr-\sinh\alpha Lr\cos\alpha Lr\right)\right) \\ & \times \left(1+\cos\alpha L(1-r)\cosh\alpha L(1-r)\right) \\ & +\left(\cosh\alpha L(1-r)\sin\alpha L(1-r)\right)-\sinh\alpha L(1-r)\cos\alpha L(1-r)\right) \\ & \times \left(1-\cos\alpha Lr\cosh\alpha Lr\right)\right] = 2\frac{(\alpha Lr)^3}{3}\left(1+\cos\alpha L\cosh\alpha L\right) \\ & \alpha L = \left(\alpha_n L\right)_{free}\sqrt{\frac{f_{n(cont)}}{f_{n(free)}}}\left(1+i\left(2\pi f_{n(cont)}-\chi Q_{n(free)}/8\pi f_{n(cont)}Q_{n(con)}\right)\right) \end{aligned}$$

k' is the normalized contact stiffness β is the damping constant

Source: D.C. Hurley, JAP, 2004, J. Killgore, Langumuir, 2011

Q-factor

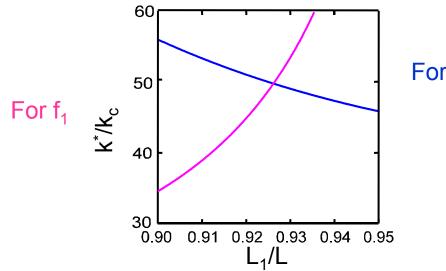


From the analysis of the resonance spectrum we can determine values of the contact resonance frequencies, Q factor, and damping of the cantilever in air

Determination of k^{*} from the contact resonance frequencies

- k^{*} tip-sample contact stiffness = ?
- r tip position parameter = ?

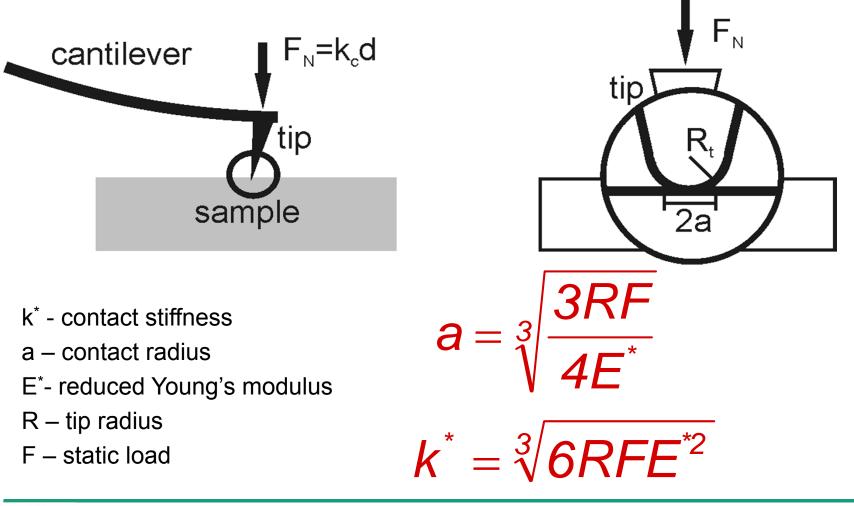
We can calculate the values of k* as a function of tip position parameter for a given value of the contact resonance frequency measured with the AFAM system



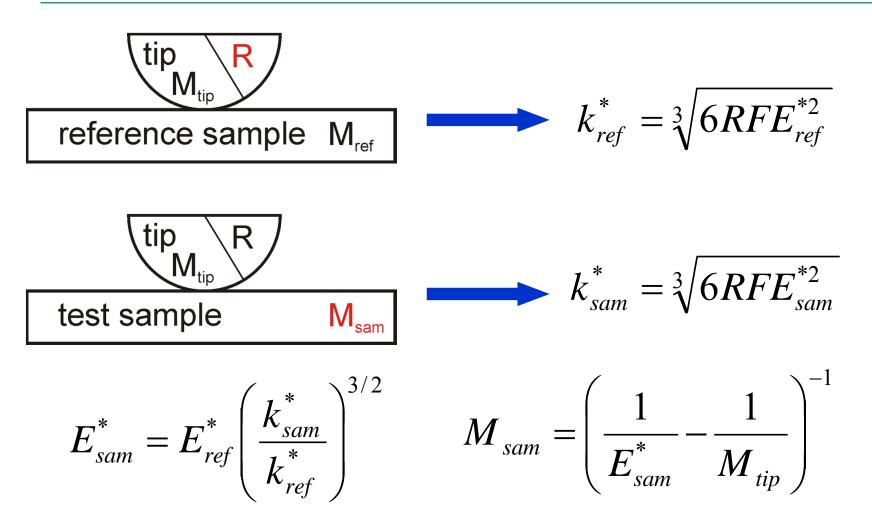
For f₂

We have to measure the contact resonance frequencies for at least two modes!

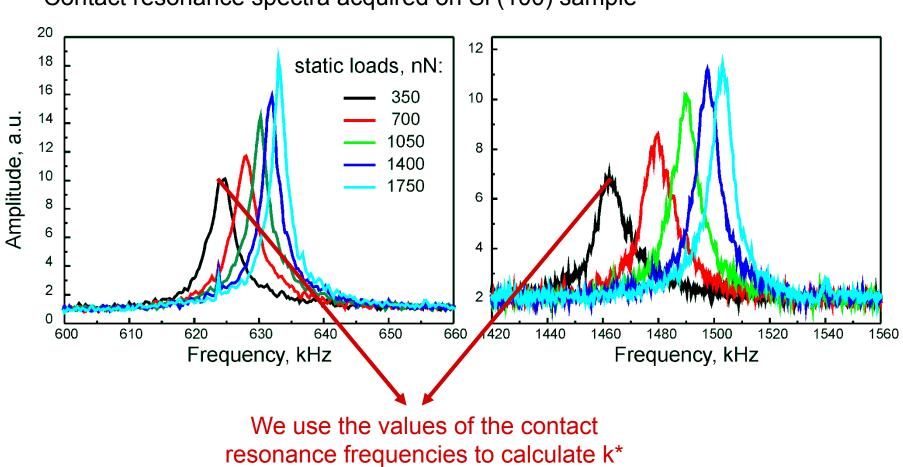
Contact mechanics



How to calculate the indentation modulus M?

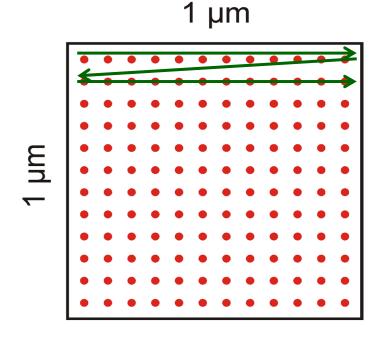


Spectroscopy mode: single point measurements



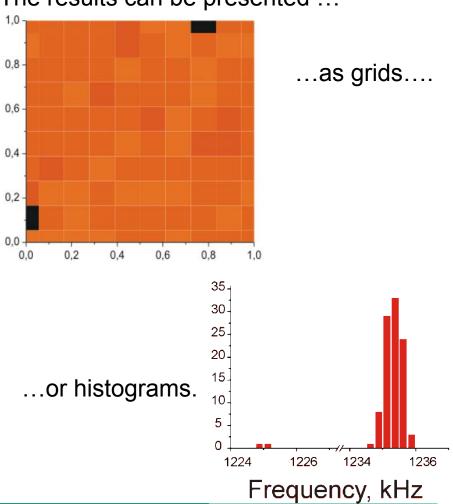
Contact resonance spectra acquired on Si (100) sample

Principle of the grid measurement



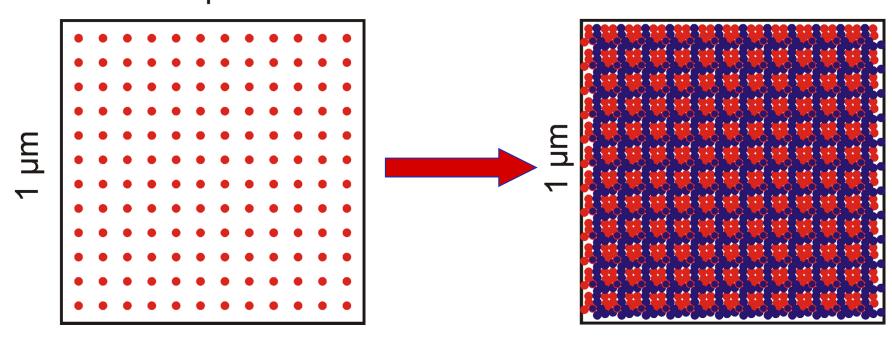
The values of contact resonance frequencies are determined as a function of a position on the sample surface at a fixed value of the applied static load.

Fraunhofer IZFP Dresden – Certified management system for research and development in the field of applied microelectronics and nanotechnology.



The results can be presented ...

And for inhomogeneous samples...



1 µm

128 × 128 points and more

1 µm

Fraunhofer IZFP Dresden – Certified management system for research and development in the field of applied microelectronics and nanotechnology.

10 × 10 points

In the near future

AFAM Dynamic-Mechanical analysis (DMA):

forced vibrations:

 $F(t) = F_0 sin\omega t$ Determine k*, ε , σ and calculate storage modulus $E' = \frac{\sigma_0}{\varepsilon_0} cos\varphi$ loss modulus $E'' = \frac{\sigma_0}{\varepsilon_0} sin\varphi$

