

Holographische Mikroskopie

ALCONOM .

als linsenlose miniaturisierte bildgebende Sensoren

R. Riesenberg, IPHT Jena, J. Schreiber, Dresden

- I Motivation und Prinzip
- II Beleuchtung
- III Rekonstruktion zur Bildgebung
- IV Auflichtanordnung Chipmikroskop
- V Beispiele und Ausblick

OPEN a ACCESS Freely available online

Mobile Phone Based Clinical Microscopy for Global Health Applications

David N. Breslauer^{1,2,9}, Robi N. Maamari^{2,9}, Neil A. Switz³, Wilbur A. Lam^{2,4}, Daniel A. Fletcher^{1,2,3}*

1 UCSF/UC Berkeley Bioengineering Graduate Group, 2 Department of Bioengineering, University of California Berkeley, Berkeley, California, University of California Berkeley, Berkeley, California, University of California Berkeley, Berkeley, California, University of California San Engenerica, 4 Department of Pediatrics, University of California San Engenerica, California University of California Berkeley, Berkeley, California, University of California, Uni

www.plosone.org, July 2009, Vol. 4, 7

Motivation: Example blood cells imaging by

smartphone based

Prinzip: Digital inline holographic microscope

ipht jena objektivfreie Mikroskopie 5 Digitale holografische inline-Mikroskopie The reference and scattered waves combine to form an interference pattern at the screen. $I(\mathbf{r}) = |A_{ref} + A_{scat}|^2$ Laser $= [A_{ref}^* A_{scat} + A_{ref}^* A_{scat}^* + A_{scat}^* A_{scat}^* + A_{ref}^* A_{ref}^*]$ Linear in the scattered wave Interference between (Holographic diffraction pattern). scattered waves Unwanted nuisance! (Classical diffraction pattern) To get rid of the reference beam intensity,

the contrast hologram is formed

 $I_{c}(r) = I(r) - |A(r,t)|^{2}$

Object reconstruction is then performed via the Kirchhoff-Helmholtz transform

Illumination - reduced abbarations (speckle free)

Full coherent illumination (coherence-length > $10^5\;\mu\text{m})$ by a DPSS laser causes coherent noise.

Right advanced imaging quality by micro-coherent illumination using a filtered LED with a coherence-length of 23 μm

Rekonstruktion: Algorithmus "Kachel-Superposition"

M. Kanka, R. Riesenberg, H. J. Kreuzer, *Opt. Lett., OSA,* **2009**, *34*, 1162-1164

Rekonstruiertes Objektbild

Rekonstruktion: Beschleunigter Algorithmus

Rekonstruktion: Spatial resolution

Probe: 1.06 µm PMMA-Kügelchen – Pinhole-Detektor-Abstand 4 mm

M. Kanka, R. Riesenberg, P. Petruck, and Ch. Graulig, Opt. Lett. 36, 3651 (2011)

Auflichtanordnung - Chipmikroskop

Beispiel: Brewers yeast imaging

Hologram

Reconstruction brewer's yeast, resolution 1 µm

objektivfreie Mikroskopie

Examples: Microfluidic Chip Microscopy, Lab-on-a-Chip

Lensfree sensing on a microfluidic chip using plasmonic nanoapertures B. Khademhosseinieh, G. Biener, I. Sencan, T.-W. Su, A. F. Coskun, and A. Ozcan Appl. Phys. Lett. **97**, 221107, 2010

Beispiele: Specklephotometrie in der Medizin

Laser Speckle Contrast Analysis (LASCA) images of the back of a hand, showing perfusion before and after gently rubbing a small area.

Reduction in perfusion caused by a rubber band

Part of a forearm, showing increased perfusion around a superficial hot-water burn

Beispiele: Specklephotometrie und in der Medizin

Speckle contrast imaging for measuring blood flow

Speckle Contrast = σ / ($_{I}$) \leq 1, σ – standard deviation

Single-exposure speckle photography - raw image of part of a retina (left), and its processed version (right).

- "Health Eye" = Retina stimulator with monitoring unit
- b) Ocular Microtremor Laser Speckle Metrology
- c) Heart Pulse Variability monitoring (Speckle time dependence)

ıpht <mark>sena</mark>

Zusammenfassung: Smartphone based lensless microscope

numerical back propagation, new reconstruction technique (tile superposition) for interference images

state-of-the-art lateral resolution equals NA = 0.8, less amount of memory and processing time of seconds

halogen filament lamp or LED

Ausblick

Linsenloses Chip-Mikroskop

"Kachel-Superpositionsprinzip" state-of-the-art Auflösung, 800 nm

Speckle-frei mit LED

Auflichtanordnung

nature methods

Techniques for life scientists and chemists

Imaging without lenses:..on-chip microscopy

Alon Greenbaum^{1,2}, Wei Luo^{1,2}, Ting-Wei Su^{1,2}, Zoltán Göröcs^{1,2}, Liang Xue¹⁻³, Serhan O Isikman^{1,2}, Ahmet F Coskun^{1,2}, Onur Mudanyali^{1,2} & **Aydogan Ozcan^{1,2,4,5}**

- Garcia-Sucerquia, J. et al. Digital in-line holographic microscopy. Appl. Opt. 45, 836–850 (2006).
- Kanka, M., Riesenberg, R. & Kreuzer, H.J. Reconstruction of high-resolution holographic microscopic images. *Opt. Lett.* 34, 1162–1164 (2009).
- Kanka, M., Riesenberg, R., Petruck, P. & Graulig, C. High resolution (NA=0.8) in lensless in-line holographic microscopy with glass sample carriers. Opt. Lett. 36, 3651–3653 (2011).

ba nature materials

5.

ARTICLES

... subwavelength coherent diffractive imaging

A. Szameit^{1,2†}, Y. Shechtman^{1†}, E. Osherovich^{3†}, E. Bullkich¹, P. Sidorenko¹, F. E. B. Kley², S. Gazit¹, T. Cohen-Hyams⁵, S. Shoham⁴, M. Zibulevsky³, I. Yavo O. Cohen¹ and M. Segev¹*

blurred image of nano-holes reconstruction SEM image

Auflösung ... 100 nm