Diode lasers for sensor applications

Bernd Sumpf
Ferdinand-Braun-Institut
Lichtenwalde, October 18, 2012
Outline

1. Diode Lasers – Basic Properties

2. Diode Lasers for Sensor Applications
 - Diode lasers with internal grating
 - Diode lasers in external cavities
 - Diode lasers as pump sources for non-linear frequency conversion
 - Hybrid integrated laser module for ps- and ns-pulses

3. Summary
Diode lasers – Features

- Wide spectral range: 0.34 nm ... 33 µm
 - FBH: 630 nm ... 1.2 µm
- High wall-plug efficiency
- Easy excitation
- Direct Modulation
- Small size
- Mechanical robustness
- Lifetime (> 10^7 h)
- Tuneability
 - Current
 - Temperature
 - External grating

Compound Semiconductors
Laser diodes: High Output Power

Laser diode

\[P = 20 \text{ W} \]
\[200 \mu \text{m} \times 2 \mu \text{m} \]

Power density
\[p = 5 \text{ MW} / \text{cm}^2 \]

Coal-fired power plant

600 MW

Same power density in a 12 cm cable

Surface of the sun

6 kW / cm²
Laser Diodes: High efficiency

Efficiency \(\approx 73\% \)

Light bulb:
\(< 5\%\)

Energy-saving lamp:
\(< 20\%\)

\(\eta_c = 73\%\)
Laser Diodes: Narrow spectral linewidth

\[\Delta \lambda_{\text{min}} \leq 10^{-6} \, \mu \text{m} \]

- Optical power \(P \) / arb. units vs. wavelength \(\lambda \) / \(\mu \text{m} \)
- Temperature \(T = 25^\circ \text{C} \)
- Power \(P = 400 \, \text{mW} \)

Planck's radiation spectrum

- Temperature: 10000 K, 5777 K, 3000 K, 1000 K, 500 K, 300 K, 100 K
- Spectral intensity: 10^10 to 10^4 W/(m²·µm)

3 cm

880 km

Paris - Berlin
Overview: Fabrication Process of a Laser Diodes

- Deposition of very thin crystalline layers on a GaAs substrate
 - Epitaxy

- Structuring of devices on the wafer
 - Processing

- Separation of single devices
 - Cleaving

- Mounting of devices on heat sinks

- Housing of devices
Schematic view of a high-power DFB laser

- Design epitaxial structure
- First epitaxy
- Manufacturing of the grating e.g. using holographic exposure
- Second epitaxy
- Process
- Facet coating
- Mounting

Resonator length
\[L = 0.75 \text{ ... } 3 \text{ mm} \]

Ridge waveguide (RW)
\[W_{RW} = 2 \text{ ... } 4 \text{ \mu m} \]
\[\Delta n_{eff} \approx 3 \times 10^{-3} \]

AR coating
\[R_f < 10^{-3} \]

Bragg Grating
Period = 150 \text{ ... } 300 \text{ nm}
Coupling coefficient
\[\kappa = 1 \text{ ... } 10 \text{ cm}^{-1} \]
940 nm DFB lasers for H$_2$O absorption spectroscopy

Transmission measurement

- Tuneable Laser
- Lambert-Beers-Law

\[I(\omega) = I_0 \cdot \exp[-\alpha(\omega) \cdot L] \]

- Threshold current \(I_{\text{th}} = 35 \text{ mA} \)
- Slope efficiency \(S = 0.9 \text{ W/A} \)
- Maximum output power \(P_{\text{max}} \approx 500 \text{ mW} \)
- Dips in the characteristic due to water absorption
940 nm DFB laser: Absorptions spectroscopy of water vapour

- Spectra calculated based on Lambert-Beers-law
- Comparison of calculated spectra to the data from the HITRAN database
- Excellent agreement
- Continuous tuning over 5 nm at one temperature
Diode lasers in external cavities for Raman spectroscopy

Raman measurement

- Fixed frequency laser (e.g. 488 nm, 671 nm, 785 nm)
 - Spectral emission width: $\Delta \nu \leq 10 \text{ cm}^{-1}$
 - Spectral stability $\delta \nu \leq 1 \text{ cm}^{-1}$
- Well-established contact free method
 - for material analysis, food safety control, clinical diagnostic.
- Excitation in the visual spectral range
 - Advantages:
 - Higher Raman signals due to a λ^{-4} – dependence
 - Resonance Raman
 - Stokes lines in the maximum of the sensitivity of CCDs
 - Disadvantages:
 - Possible fluorescence background
- Shifted excitation Raman difference spectroscopy
 - Spectral distance for SERDS $\Delta \nu_{\text{SERDS}} \approx 10 \text{ cm}^{-1}$
671 nm microsystem light source

- **Gain medium:**
 - Broad area laser
 - \(w = 30 \mu m, 60 \mu m, 100 \mu m; \ L = 2 \text{ mm} \)
 - Output power up to 1.5 W
- **Resonator**
 - Front facet of the diode laser and Reflection Bragg Grating
 - Emission width below 100 pm (10 cm\(^{-1}\))
- **Active adjustment necessary**

Microoptical bench (13 mm x 4 mm)

671 nm module – application in Raman-Spectroscopy

- Ethanol as analyte (A): Raman-signals spectrally resolved

- Fluorescent interference introduced (B)
 - Laser dye Cresyl violet

- Application of SERDS successful (C)
Diode lasers in external cavity for interferometry

Absolute distance interferometry (ADI) with 10^{-6} accuracy requires **tunable red emitting diode lasers**:

- Preferred wavelength ≈ 633 nm
- Single-mode operation
- Tuning range ≥ 50 pm (40 GHz)
 - Determines the smallest measurement distance about 4 mm
- Narrow spectral line width ≤ 10 MHz (0.015 pm)
 - Determines the maximal measurement distance about 15 m
- Output power ≥ 5 mW
- **Current tunable**, no moving parts

Solution:

- ECDL with **mode spacing** larger the spectral width of the RBG $\Delta \lambda_{RBG} \approx 50$ pm

 $n \ L \leq 4 \ mm \quad \Rightarrow \ \Delta \lambda_{FP} \geq 50$ pm - within RBGs spectral width only one mode!

- Narrow line width due to high quality resonator (High facet reflectivity)
Scheme of the external cavity laser

Single mode operation
- 34 pm, i.e. 25 GHz

Emission line width (self-delayed heterodyne)
- Between mode hops smaller 10 MHz
 ▶ coherence length of 30 m
- At mode hop increase to about 15 MHz

Side mode suppression ratio: Better than 25 dB
Diode lasers as pump sources for non-linear frequency conversion, e.g. SHG

Low power application (25 mW) for Raman spectroscopy

- Non-linear frequency conversion – Second Harmonic Generation (SHG)
 - Pump source
 → Distributed Feedback (DFB) RW Laser
 - SHG-crystal
 → periodically poled MgO:LiNbO₃ for 488 nm at 25°C
 - RW-SHG-Waveguide (3 µm x 5 µm x 11.5 mm)
 → higher efficiency

Microoptics

CuW-submount

Microbench (25 mm x 5 mm)
Diode lasers for the generation of ps- and ns-pulses

Methods:

- **Gain switching**
 - Current injection
 - Pulse length: 1 ns – 1 s
- **Q-switching**
 - Changing the properties of the laser cavity
 - E.g. implementation of an absorber section
 - Pulse length: 50 ps – 150 ps
 - Rep. Rate: up to 0.5 GHz
- **Mode locking**
 - Coupling of longitudinal modes
 - Passively (saturable absorber section)
 - Actively
 - Pulse length: 1 – 20 ps
 - Resonator length determines the rep. rate in the GHz-range
Gain Switching – DFB laser

- Geometry: \(L = 2 \text{ mm}, W = 6 \mu \text{m} \)
- Pulse length: \(10 \text{ ns} \ldots 1 \text{ ms}; \text{ Rep. rate} 1 \text{ MHz} \)
- DFB laser with \(P_{\text{opt}} = 2 \text{ W} \) at \(I = 4 \text{ A} \)
- MOPA system with up to \(P_{\text{opt}} = 10 \text{ W} \)

\[
\tau_{\text{pulse}} = 10 \text{ ns}, \quad f_{\text{rep}} = 1 \text{ MHz}
\]

\[
\begin{align*}
\text{Pulse power P / W} &
\begin{cases}
0 & \text{I = 0.80 A, P = 0.52 W} \\
25 & \text{I = 1.80 A, P = 1.05 W} \\
50 & \text{I = 2.80 A, P = 1.53 W} \\
75 & \text{I = 4.00 A, P = 2.02 W}
\end{cases} \\
\text{Pulse current I / A} &
\begin{cases}
0 & \text{I = 0.80 A, P = 0.52 W} \\
25 & \text{I = 1.80 A, P = 1.05 W} \\
50 & \text{I = 2.80 A, P = 1.53 W} \\
75 & \text{I = 4.00 A, P = 2.02 W}
\end{cases}
\end{align*}
\]
Q-Switching – Multi-Section RW- and DBR Lasers

e.g. 3 – section DBR laser with gain, absorber, and grating section – length 1.5 ... 4.0 mm

- Current through gain section varied
- Output power can be modulated using the absorber section
 - \(V_{SAB} = -2.0 \text{ V} \); \(t_{\text{mod}} = 1 \text{ ns} \); \(f_{\text{rep}} = 40 \text{ MHz} \)
- Pulse length \(\leq 100 \text{ ps} \)
- Pulse power \(\approx 300 \text{ mW} \)
- Amplified power: 20 W
Monolythic devices for mode locking

4 section DBR-Laser
- DBR grating determines wavelength
- Fast saturable absorber for mode locking
 - Passive and active mode locking possible
- Round trip: ~ 230 ps, rep. rate ~ 4.3 GHz
- Pulse length ~ 8 ps, Jitter: < 1 ps
- Peak power: 1 W at 8 ps Pulse length
MOPA system with tapered amplifier for Q-switched ps-pulses

- **Master Oscillator:** Q-switched DBR
- **Power Amplifier:** Tapered Laser
 - Amplification of short pulses
 - Maintaining Beam Quality
 - Separate Excitation of RW and Tapered Section

Generation of current pulses
- **MO** < 1 ns, ≤ 1 A
- **PA** < 2 ns, ≤ 20 A

Electronics also developed at FBH
Results: MOPA system for Q-switched ps-pulses

- Pulse length (FWHM) = 73 ps
- Pulse power: 20 W
- Wavelength defined by MO with emission width (FWHM ~ 0.2 nm)
Pulse picking using tapered amplifier

Basic principle:

- RW-section of TPA as selector
 - Transparent or absorbing
 - Controlled with GaN-HF-transistor
 - Selectable duty cycle
- Amplification in tapered section

Diagram:
- Master oscillator
- DBR cavity gain absorber
- Amplifier section RW-section for gating
- HF transistor
- U_{CTR} G D S
- Low frequency pulses 1kHz - 100MHz
- Pulse picker element
- High frequency pulses (GHz)

Graphs:
- Power / a.u. vs. time / ns
 - f active ML = 4.32399GHz
 - Pulse picker f/64 ~ 67MHz
Pulse picker – optical micro bench

- Integration of
 - optical elements
 - high-frequency electronics
 - 500 mA current pulses
 - 200 ps pulse width
 - Adjustable rep. rate
 - 1 kHz – 333 MHz
 - Jitter smaller 25 ps
- Small inductivity – short wires

GaN high electron mobility transistor HEMT

1cm DBR Laser

HF Ansteuerung Modenkopplung

HF Ansteuerung Pulspicker

Pulspicker mit HF Transistor

Auskoppeloptiken
Summary and Acknowledgments

Diode lasers:
- Compact, reliable, high-power light sources for different applications
- Features can be optimized with respect to the application:
 - Wavelength
 - Power
 - Emission width
 - Beam quality
 - Pulse parameter

Acknowledgments:
- All colleagues at the FBH
- Colleague at the Technische Universität Berlin (Agr. Laserspektroscopy)

Financial Support:
- Zukunftsfond Berlin
- Deutsche Forschungsgemeinschaft
- Bundesministerium für Bildung und Forschung
- Europäische Gemeinschaft